Can the limit of (√(n^2+1) - n) be solved?

  • Thread starter Thread starter sitia
  • Start date Start date
  • Tags Tags
    Limit
sitia
Messages
25
Reaction score
0

Homework Statement



Solve the limit: lim n→∞ (√(n^2+1) - n)

Homework Equations





The Attempt at a Solution



I am very lost on how to start so I do not have anything
 
Physics news on Phys.org
Multiplying by 1 in the form of (sqrt(n^2+1)+n)/(sqrt(n^2+1)+n) is probably the easiest way to go. There's other ways to do it. Try that one first.
 
Have you tried multiplying by the conjugate?

edit: too slow.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top