I Can We Discover a Number Set More General Than Reals with Similar Properties?

  • I
  • Thread starter Thread starter trees and plants
  • Start date Start date
  • Tags Tags
    Numbers Sets
trees and plants
Hello there.We know that we have sets of numbers like the real numbers, complex numbers, quaternions, octonions.Could we find a set of numbers more general than that of real numbers that has basic properties of the real numbers like commutativity, order, addition, multiplication, division and can be used to solve problems? I know that complex numbers were discovered after attempts of solving polynomial equations, but perhaps algebraic geometry could find other kinds of numbers? Thank you.
 
Mathematics news on Phys.org
You can show that everything beyond complex numbers must lose properties of a field. Quaternions are not commutative any more, octonions are not associative any more, sedenions have zero divisors.
I'm not sure where exactly the proof is but if you click around starting from Hurwitz's theorem you probably find it.
 
universe function said:
Could we find a set of numbers more general than that of real numbers that has basic properties of the real numbers like commutativity, order, addition, multiplication, division and can be used to solve problems?

Unless you say specifically what you mean by "basic properties of the real numbers", this is not a specific question. For example, in your list of basic properties of the real numbers, you omitted associativity.

And it isn't clear what you mean by "order". For example, a finite field ( often introduced to students in a concrete way as "clock arithmetic"https://en.wikipedia.org/wiki/Modular_arithmetic ) shares many properties with those of the real numbers. However, although one can "order" the elements of a finite field , the property " If ##a < b ## and ##c > 0## then ##ca < cb##" may not hold. Does the failure of this property disqualify a finite field from being, in your words, "a set of numbers more general than that of real numbers"?

If you study the technicalities needed to understand @mfb 's recommendation of Hurwitz's Theorem https://en.wikipedia.org/wiki/Hurwitz's_theorem_(composition_algebras) or the Frobenius Theorem https://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras) you'll get an idea of the details you need to fill-in to make your question specific.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top