DiracPool
- 1,242
- 515
Hey, OP here, just wanted to check in and thank all of you for the now 100 REPLIES! I've learned a lot. Keep em coming! 

Let me quote the mathpages site so you can clarify your confusion:LastOneStanding said:No, it does not. One-way velocities of everything change when you change your synchrony convention, and these ##\epsilon##-dependent one-way frame velocities in all directions are still required to be less than the one-way speed of light in those directions. There are no physical consequences of changing your synchronization. The existence of a time-like frame with light at rest would be very much a physical consequence. Einstein was well aware himself that it was a convention for the one-way speed of light when he laid out the postulates. As PAllen said, the simultaneity convention Einstein used is a definition, not one of the postulates.
I don't know what poor references you are referring to that call the Einstein clock synchronization a postulate, but in the 1905 paper Einstein certainly doesn't do so: "We have not defined a common “time” for A and B, for the latter cannot be defined at all unless we establish by definition that the “time” required by light to travel from A to B equals the “time” it requires to travel from B to A. [Emphasis Einstein's]"
TrickyDicky said:Let me quote the mathpages site so you can clarify your confusion:
"Einstein tried to make the meaning of this definition more clear by saying
That light requires the same time to traverse the path A to M (the midpoint of AB) as for the path B to M is in reality neither a supposition nor a hypothesis about the physical nature of light, but a stipulation which I can make of my own freewill in order to arrive at a definition of simultaneity.
Of course, this concept of simultaneity is also embodied in Einstein's second "principle", which asserts the invariance of light speed. Throughout the writings of Poincare, Einstein, and others, we see the invariance of the speed of light referred to as a convention, a definition, a stipulation, a free choice, an assumption, a postulate, and a principle... as well as an empirical fact. There is no conflict between these characterizations, because the convention (definition, stipulation, free choice, principle) that Poincare and Einstein were referring to is nothing other than the decision to use inertial coordinate systems, and once this decision has been made, the invariance of light speed is an empirical fact."
You always dismiss like that what you can't grasp? You missed the part where it says that the definition is embodied in the second postulate which I'd say is considered an assumption about light propagation.LastOneStanding said:Mathpages is correct in saying it's a stipulation I can make of my own free will and has nothing to do with the physical nature of light; however, that stipulation also has nothing to do with choosing inertial coordinates. The two-way invariance of the speed of light is an empirical fact; the one-way is not because it is fundamentally not measurable. In order to measure a one-way speed, you need clocks at two places. Those clocks need to be synchronized. Thus, the synchronization scheme you use determines your one-way speeds, including that of light. Until you have chosen such a scheme, a one-way speed is a meaningless quantity—and even after you've chosen one, it's a coordinate dependent one. It's not that we are ignorant of the "true" one-way speed of light and, if we knew what it really was, we could establish the correct synchrony convention. It's that one-way speeds are intrinsically a matter of definition since they require synchronized clocks. By using the Einstein synchronization scheme, we define the one-way speed of light to be isotropic. It's a nice definition that simplifies a lot of things, but it is not an assumption about the physical propagation of light.
The fact that earlier you thought an anisotropic speed of light would allow rest frames of photons is, for me, pretty good demonstration that you have no idea what you're talking about and are probably Googling this as you go along. So please don't project your own confusion onto other people. In any case, the others are welcome to continue with this if they like. Personally, I find you incredibly obnoxious and I'm not going to waste more time repeating the same things over and over.
I think that the discussion is a little bit of a semantic argument.TrickyDicky said:You missed the part where it says that the definition is embodied in the second postulate which I'd say is considered an assumption about light propagation.
First it's good you introduce an appeaser tone.DaleSpam said:So then the semantic argument becomes, what parts of these three sets do we consider to be "SR". If we consider "SR" to be a theory, then all of these are experimentally equivalent and therefore they are all different interpretations or derivations of the same theory, SR. If we consider "SR" to be only Einstein's specific derivation (i.e. his two postulates) then SR becomes merely an interpretation of the unnamed general theory which encompasses all of the experimentally equivalent interpretations.
I would like for that theory to be GR but I understand at this point we cannot assert it (maybe when quantum gravity finally arrives).DaleSpam said:I would only ask someone taking your approach to also recommend a name for the general theory of which SR is just an interpretation.
OK, that makes things easy then.TrickyDicky said:I actually have no problem with either approach,it's a matter of taste I guess.
It is allowed to talk about it. There is even a FAQ about it. The FAQ and the discussions are short, but they are allowed.TrickyDicky said:I was simply concerned about a possible double standard: In that if it is not allowed to talk about a photon's rest frame
DaleSpam said:Different synchronization conventions are not logical self contradictions, so the discussion can be substantially longer. I don't see any double-standard here.
LastOneStanding said:Mathpages is correct in saying it's a stipulation I can make of my own free will and has nothing to do with the physical nature of light; however, that stipulation also has nothing to do with choosing inertial coordinates.
Russell E said:I don't think mathpages says the use of light pulses to define synchronization has nothing to do with the physical nature of light. Also, it has everything to do with choosing inertial coordinates... in fact, it is one and the same stipulation, provided you define (as Einstein did, implicitly) inertial coordinates as those in which the laws (plural) of mechanics hold good. You can find a more detailed discussion of this on the mathpages site here
www.mathpages.com/home/kmath684/kmath684.htm
PAllen said:In has been pointed out, and not under dispute in this thread, that choosing a anisotropic clock synch for coordinates leads to non-orthonormal coordinates, with cross terms in the metric.
PAllen said:From this it is obvious that you would have non-vanishing connection even for an inertial observer, thus 'inertial forces'.
PAllen said:However, in the formulation I gave in #49 (see also #57), where distances and angles are measured via two way lightspeed, the 3-d projection of world lines is the same as for standard coordinates, while the rate of motion (using the 'skewed' clocks) along 3-paths are adjusted by the 'inertial forces'.
I don't think the consequences of non-standard clock synch are in dispute between myself, Dalespam, or LastOneStanding. There was no dispute when I mentioned quite early in this thread that you would get non-orthonormal spacetime coordinates. I don't think any us did not understand that that would mean laws of motion take a more complex form.Russell E said:If you mean that the laws of Newtonian mechanics do not hold good (in the sense of Einstein's 1905 paper) in terms of anisotropic coordinates, then we're in agreement, but I don't agree that this is not under dispute in this thread, because (for example) it was stated in the previous post that "the stipulation has nothing to do with choosing inertial coordinates". What we've just agreed is that the stipulation to use isotropic light speed and the stipulation to use isotropic inertia are one and the same. So I would say this is exactly what is under dispute in this thread.
I accept the quibble that an observer doesn't have a connection, and agree with the rest (obviously).Russell E said:I would quibble with the word "observer", because an observer doesn't have a connection, vanishing or otherwise. An observer just exists along a specific worldline. To talk meaningfully about "connections" you need to talk in terms of coordinate systems. If what you're trying to say is that the laws of mechanics (in their homogeneous and isotropic form, i.e., no 'inertial forces') do not hold good in terms of an anisotropic system of coordinates (by definition!), then we're in agreement.
It is not a re-statement. There are many other choices for choosing spatial coordinates which would not have indicated properties. For example, if you use an r coordinate based on proper distance along the surface of constant t, spatial coordinates of event would change (compared to standard inertial) and the metric and laws of motion would be even more complex (for example the two way coordinate speed of light would not be c; and inertial paths would not all be straight lines when projected to 3-surfaces of simultaneity). I am making the explicit point that if we base all spatial measurements on two way light measures, then spatial coordinates can be the same between standard inertial coordinates and non-standard inertial coordinates (with alternate clock synch). Inertial paths may have variations in coordinate speed but not spatial directionRussell E said:I don't see why this is prefaced with "However". It looks like just a re-statement of the preceding comment, i.e., inertia is not isotropic in terms of anisotropic coordinate systems - by definition.
Russell E said:...
To answer the OP's original question, of course it's possible to accurately measure time dilation, once you define what you mean by time dilation. According to special relativity, we simply need to establish a system of coordinates in which mechanical inertia is homogeneous and isotropic, and then compare the characteristic times of moving physical processes (clocks, particle decays, etc) with the time coordinates of that system, and note the time dilation. This is one of the ways we test for Lorentz invariance of physical phenomena. The fact that all phenomena are Lorentz invariant is not at all tautological or conventional, it is an empirical fact.
PAllen said:The statement about whether this is connected to choosing inertial coordinates depends on what you mean by this. There would be no debate about what is meant by standard inertial coordinates. However, one could argue that inertial coordinates encompass something more general.
PAllen said:The statement about whether this is connected to choosing inertial coordinates depends on what you mean by this. There would be no debate about what is meant by standard inertial coordinates. However, one could argue that inertial coordinates encompass something more general.
PAllen said:There are many other choices for choosing spatial coordinates which would not have indicated properties...
PAllen said:But I agree that it is perfectly correct to say these measure time dilation in a standard inertial coordinates set up by a specified observer. I really doubt anyone had any confusion on this point.
LastOneStanding said:The synchrony convention is connected to the form your inertial frames take.
I have no disagreement with the above. Further I believe the main participants in the thread understood it.Russell E said:There are two different meanings of "inertial coordinate system" in common usage, one of which leaves the synchronization unspecified (so we cannot say that Newton's laws hold good in terms of those coordinates), and one of which specifies the unique synchronization required in order for Newton's laws to hold good. Any time you use a system of coordinates and apply Newton's laws of motion (without 'inertial forces'), you are using the fully specified definition, with the synchronization based on the isotropy of mechanical inertia. This is the de facto "standard inertial coordinate system" for both Newtonian and relativistic physics, and Einstein specifically defined his coordinate systems this way. But most of the discussion in this thread has been based on the other (inadequate) definition of "inertial coordinate system", the one that leaves the synchronization unspecified.
I was responding specifically to your claim that discussion I had following 'However' added no content. I disagree. It was clarifying what must change with choice of synchronization versus what need not change. My further clarification that this is a non-trivial statement is that the arguably most common way to build up distance coordinates given a space-time foliation (using proper distance) will change more things than necessary. By instead using radar distance rather proper distance within spatial slices, more of the features of the standard inertial coordinates can be carried over to non-standard ones. All of this is because you insisted my discussion following 'However' was redundant.Russell E said:I don't understand the point of this comment. If you're simply saying we are free to define space and time coordinates in a variety of ways, most of which are not "inertial coordinate systems" (according to either of the definitions), then that's certainly true. But I don't see how that bears on the issue. We're not trying to specify all things that are NOT coordinate systems in which Newton's laws hold good, we are trying to specify the coordinate systems in which they DO hold good. The point is that such coordinate systems possesses a unique synchronization, and it is in terms of these operationally meaningful coordinate systems that we quantify and measure both Newtonian and relativistic effects.
Russell E said:Only if you are using the incomplete definition of inertial coordinate system. (I take the liberty of replacing your word "frame" with "coordinate system", since the meaning of "frame" raises other definitional issues that I think are not central to this discussion.) The point is, Einstein referred to systems of coordinates in which Newton's laws (plural, not just the first law) hold good, and this uniquely specifies the synchronization such that mechanical inertia is isotropic. So there is no ambiguity or flexibility in the form of this class of coordinate systems (which is usually what people mean when they refer to inertial coordinates - even though they may not realize it). These coordinate systems can be operationally established, and the one-way speed of light is empirically equal to c in terms of these coordinates, and time dilation and length contraction and relativistic aberration and every other relativistic effect are directly expressible and measurable in terms of these coordinates.
PAllen said:Everything measurable in one coordinates system is measurable in any other...
Russell E said:Much of this thread has revolved around the claim that things like time dilation and the one-way speed of light are not measurable, because they rely on a convention. Of course, every quantification of a physical parameter relies on a convention (ultimately coming down to a comparison of one thing with another), but the point is that the convention in question here is nothing other than the convention of using inertial coordinates, defined (as Einstein expressed it, somewhat imprecisely) as coordinates in which Newton's laws of mechanics hold good. The fact that the one-way speed of light is c in terms of standard inertial coordinates is not a matter of convention, it is an empirical fact. You say everyone here agrees with this, and yet every time I say it, someone disagrees, and repeats the claim that the one-way speed of light in terms of inertial coordinates is not measurable. They say it depends on the form of the inertial coordinates, so they obviously don't agree that inertial coordinates possesses a unique synchronization such that the numerical value of the one-way speed of light is c, and all other relativistic effects have their expected numerical values.
PAllen said:...there is only disagreement on whether you can talk about non-standard inertial coordinates; you sort of want to say you can't, without quite going so far...
PAllen said:- if you use standard clock synch to set up inertial coordinates, you get standard inertial coordinates in which the coordinate expression of physical laws is particularly simple; this convention defines that the one way speed of light is isotropically c.
PAllen said:- if you set up inertial coordinates such that the Newton's and Maxwell's laws have simplest coordinate expression (alternatively, the the metric is diag(1,-1,-1,-1) in appropriate signature), you will find that one way speed is c.
Russell E said:The important point to convey to students is that the invariance of the one-way speed of light in terms of coordinates in which the Newtonian equations of motion are valid (roughly speaking) is not conventional, it is an empirical fact.
pervect said:My argument goes something like this. Suppose we collide two equal masses moving in opposite directions, and they come to a complete stop. Then there is one, and only one, clock synchronization in which we measure their velocities to be equal (using the usual two-clock definition of velocity). This is variously called the Einstein clock synchronization, or an isotropic clock synchronization.
...
PAllen said:Anyway, as I noted above, the real value of emphasizing conventionality of simultaneity is when you consider non-inertial observers or GR situations.