I Can you make the induction step by contradiction?

jack476
Messages
327
Reaction score
125
Assuming you've sufficiently proven your inductive basis, can you complete a proof by induction in the following manner:

Make the inductive hypothesis, assume P(n) is true for some n. Assume P(n+1) is not true. If it follows from the assumption that P(n+1) is false that P(n) must also therefore be false, contradicting the inductive hypothesis, does this mean P(n) must imply P(n+1)?
 
Mathematics news on Phys.org
Yes, that is valid.
The assumption from which you derived the contradiction was ##\exists n\ P(n)\wedge\neg P(n+1)##. Deriving a contradiction from this proves its negation, which is ##\forall n\neg(P(n)\wedge \neg P(n+1))##
which, by de Morgan, is equivalent to
##\forall n\ \neg P(n)\vee P(n+1)##
which is equivalent to
##\forall n\ P(n)\to P(n+1)##
which is what we need to complete the induction.
 
  • Like
Likes member 587159
Lovely, thank you :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top