Can You Match Constants to This Cubic Polynomial?

In summary: Read More(u - 1)^3 + 3(u - 1)^2 - 3(u - 1) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}and now applying the Cubic Formula, we have\displaystyle \begin{align*} u &= \sqrt[3]{ \frac
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Find the constants \(\displaystyle a,\;b, \;c,\; d\) such that

\(\displaystyle 4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)\).
 
Mathematics news on Phys.org
  • #2
Using the triple-angle identity for cosine:

(1) $\displaystyle \cos(3\theta)=4\cos^3(\theta)-3\cos(\theta)$

we may solve the cubic equation:

(2) $\displaystyle 8x^3-6x+\sqrt{3}=0$

To transform equation (2) into a form where the stated identity (1) is useful, we make the substitution $x=a\cos(\theta)$, where $a$ is a constant to be determined. With this substitution, equation (2) can be written:

(3) $\displaystyle 8a^3\cos^3(\theta)-6a\cos(\theta)=-\sqrt{3}$

In equation (3), the coefficient of $\cos^3(\theta)$ is $8a^3$. Since we want this coefficient to be $4$ [as it is in equation (1)], we divide both sides of equation (3) by $2a^3$ to obtain:

(4) $\displaystyle 4\cos^3(\theta)-\frac{3}{a^2}\cos(\theta)=-\frac{\sqrt{3}}{2a^3}$

Next, a comparison of equations (4) and (1) leads us to require that $\displaystyle \frac{3}{a^2}=3$. Thus, $a=\pm1$. For convenience, we choose $a=1$; equation (4) then becomes:

(5) $\displaystyle 4\cos^3(\theta)-3\cos(\theta)=-\frac{\sqrt{3}}{2}$

Comparing equation (5) with the identity in (1) leads us to the equation:

$\displaystyle \cos(3\theta)=-\frac{\sqrt{3}}{2}$

The solutions here are of the form:

$\displaystyle 3\theta=\frac{\pi}{6}(12k+5),\,\frac{\pi}{6}(12k+7)$

$\displaystyle \theta=\frac{\pi}{18}(12k+5),\,\frac{\pi}{18}(12k+7)$

Only 3 of these angles yield distinct values of $\cos(\theta)$, namely:

$\displaystyle \theta=\frac{5\pi}{18},\,\frac{7\pi}{18},\,\frac{17\pi}{18}$

Thus, the solutions of the equation in (2) are:

$\displaystyle x=\cos\left(\frac{5\pi}{18} \right),\,\cos\left(\frac{7\pi}{18} \right),\,\cos\left(\frac{17\pi}{18} \right)$

Hence, $a=4$, and $(b,c,d)$ can be any of the six permutations of the 3 roots listed above.
 
  • #3
Hi MarkFL, thanks for participating and your answer is correct!:D

Hey, I'm impressed at how fast you were in replying to this problem!:cool:
 
  • #4
I struggled at first with Vieta, but then I recalled that this is quite similar to the High School POTW that I submitted for use on 9 June, and so I copied and pasted the solution I had provided, made a few changes, and had it solved. (Angel)
 
  • #5
anemone said:
Find the constants \(\displaystyle a,\;b, \;c,\; d\) such that

\(\displaystyle 4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)\).
Clearly $a=4$. For the rest ... [sp]$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$, so if we put $x=\cos\theta$ then the equation $4x^3-3x+\tfrac{\sqrt{3}}{2}=0$ becomes $\cos(3\theta) = -\tfrac{\sqrt3}2 = \cos150^\circ$, with solutions $\theta = 50^\circ,\;170^\circ,\;290^\circ$ or, if you prefer, $50^\circ,\;70^\circ,\;170^\circ$. Thus we can take $b= \cos50^\circ$, $c = \cos70^\circ$, $d = -\cos10^\circ$.[/sp]

Edit. Sorry! I took so long writing this that I failed to see that Mark had already replied.
 
Last edited:
  • #7
anemone said:
Find the constants \(\displaystyle a,\;b, \;c,\; d\) such that

\(\displaystyle 4x^3-3x+\frac{\sqrt{3}}{2}=a(x-b)(x-c)(x-d)\).

\(\displaystyle \displaystyle \begin{align*} a\left( x-b \right) \left( x-c\right) \left( x-d \right) = a \, x^3 - \left( a\,b + a\,c + a\,d \right) x^2 + \left( a\,b\,c + a\,b\,d + a\,c\,d \right) x - a\,b\,c\,d \end{align*}\)

Equating the like powers of x we find

\(\displaystyle \displaystyle \begin{align*} a &= 4 \\ \\ - \left( 4b + 4c + 4d \right) &= 0 \\ b + c + d &= 0 \\ \\ 4\,b\,c + 4\,b\,d + 4\,c\,d &= -3 \\ b\,c + b\,d + c\,d &= -\frac{3}{4} \\ \\ 4\,b\,c\,d &= \frac{\sqrt{3}}{2} \\ b\,c\,d &= \frac{\sqrt{3}}{8} \end{align*}\)

Rearranging the first equation we have \(\displaystyle \displaystyle \begin{align*} b = -c - d \end{align*}\) and substituting into the second equation we find

\(\displaystyle \displaystyle \begin{align*} \left( - c - d \right) c + \left( -c - d \right) d + c\,d &= -\frac{3}{4} \\ -c^2 - c\,d - c\,d - d^2 + c\,d &= -\frac{3}{4} \\ c^2 + c\,d + d^2 &= \frac{3}{4} \\ c^2 + c\,d + \left( \frac{d}{2} \right) ^2 - \left( \frac{d}{2} \right) ^2 + d^2 &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 + \frac{3d^2}{4} &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 &= \frac{ 3 - 3d }{4} \\ c + \frac{d}{2} &= \frac{ \pm \sqrt{ 3 - 3d }}{2} \\ c &= \frac{-d \pm \sqrt{ 3 - 3d } }{2} \end{align*}\)

and so \(\displaystyle \displaystyle \begin{align*} b = - \left( \frac{-d \pm \sqrt{ 3 - 3d }}{2} \right) - d = \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \end{align*}\)

Substituting into the final equation, we find

\(\displaystyle \displaystyle \begin{align*} \left( \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \right) \left( \frac{-d \pm \sqrt{ 3 - 3d } }{2} \right) d &= \frac{\sqrt{3}}{8} \\ \left( -d \mp \sqrt{ 3 - 3d} \right) \left( -d \pm \sqrt{ 3 - 3d } \right) d &= \frac{\sqrt{3}}{2} \\ \left[ d^2 - \left( 3 - 3d \right) \right] d &= \frac{\sqrt{3}}{2} \\ d^3 + 3d^2 - 3d - \frac{\sqrt{3}}{2} &= 0 \end{align*}\)

Now making the change of variable \(\displaystyle \displaystyle \begin{align*} u = d + 1 \end{align*}\), we find

\(\displaystyle \displaystyle \begin{align*} \left( u - 1 \right) ^3 + 3 \left( u - 1 \right) ^2 - 3 \left( u - 1 \right) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}\)

and now applying the Cubic Formula, we have

\(\displaystyle \displaystyle \begin{align*} u &= \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} + \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } + \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} - \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } \\ &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d + 1 &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } - 1 \end{align*}\)

Back-substituting will enable us to evaluate b and c.
 
  • #8
I have always liked Cardano's method that I learned a long long time ago from a book of my father. Since I still have fond sentimental memories of it, I'm presenting it as well.

We can write the cubic expression in equation form as:
$$x^3 - \frac 3 4 x + \frac {\sqrt 3} 8 = 0 \qquad (1)$$
We substitute
$$x=y+z \qquad\qquad (2)$$
giving us a free choice for either $y$ or $z$:
\begin{array}{lcl}
(y+z)^3 - \frac 3 4 (y+z) + \frac {\sqrt 3} 8
&=&(y^3+z^3) + (3y^2z+3yz^2) - \frac 3 4 (y+z) + \frac {\sqrt 3} 8 = 0 \\
&=&(y^3+z^3) + \left(3yz - \frac 3 4\right)(y+z) + \frac {\sqrt 3} 8
\end{array}
Now we make our choice for z such that $3yz - \frac 3 4 = 0$, which will make the second term vanish.
That is, we substitute:
$$z = \frac 1 {4y} \qquad\qquad (3)$$
The result is:
\begin{array}{lcl}
(y^3+\frac 1 {4^3 y^3}) + \frac {\sqrt 3} 8 &=& 0 \\
y^6 + \frac {\sqrt 3} 8 y^3 + \frac 1 {4^3} &=& 0
\end{array}
Solving the equivalent quadratic equation gives:
$$y^3 = \frac 1 8 \left(-\frac 12 \sqrt 3 \pm \frac 1 2 i\right) = \frac 1 8 \exp\left(\pm \frac 5 6 \pi i\right)$$
The corresponding solutions are:
$$y=\frac 1 2 \exp\left(\pm \frac 5 {18} \pi i\right), \quad \frac 1 2 \exp\left(\pm \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\pm \frac {29} {18} \pi i\right)$$
Substituting in (3) gives us:
$$z=\frac 1 2 \exp\left(\mp \frac 5 {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {29} {18} \pi i\right)$$
In other words, in each case we have $z=\bar y$.
As a result, from (2) we find $x=y+z=y+\bar y=2\Re (y)$, meaning:
$$x=\cos\left( \frac 5 {18} \pi\right), \quad\cos\left( \frac {17} {18} \pi\right), \quad\cos\left( \frac {29} {18} \pi\right)$$

Therefore the solution is
$$a=4, \quad b= \cos\left( \frac 5 {18} \pi\right), \quad c=\cos\left( \frac {17} {18} \pi\right), \quad d=\cos\left( \frac {29} {18} \pi\right). \qquad \blacksquare$$
 
Last edited:
  • #9
Opalg said:
Clearly $a=4$. For the rest ... [sp]$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$, so if we put $x=\cos\theta$ then the equation $4x^3-3x+\tfrac{\sqrt{3}}{2}=0$ becomes $\cos(3\theta) = -\tfrac{\sqrt3}2 = \cos150^\circ$, with solutions $\theta = 50^\circ,\;170^\circ,\;290^\circ$ or, if you prefer, $50^\circ,\;70^\circ,\;170^\circ$. Thus we can take $b= \cos50^\circ$, $c = \cos70^\circ$, $d = -\cos10^\circ$.[/sp]

Edit. Sorry! I took so long writing this that I failed to see that Mark had already replied.

Hi Opalg, don't be sorry because I bet you have no idea how much I hope you would reply to all of my challenge problems!:eek::D

kaliprasad said:

Hi kaliprasad, hmm...so, that blog is yours? Thanks for sharing it with us and I've checked it out and found that you have quite a collection of interesting problems in your blog! My hearty wishes for your blogging success!:)

Prove It said:
\(\displaystyle \displaystyle \begin{align*} a\left( x-b \right) \left( x-c\right) \left( x-d \right) = a \, x^3 - \left( a\,b + a\,c + a\,d \right) x^2 + \left( a\,b\,c + a\,b\,d + a\,c\,d \right) x - a\,b\,c\,d \end{align*}\)

Equating the like powers of x we find

\(\displaystyle \displaystyle \begin{align*} a &= 4 \\ \\ - \left( 4b + 4c + 4d \right) &= 0 \\ b + c + d &= 0 \\ \\ 4\,b\,c + 4\,b\,d + 4\,c\,d &= -3 \\ b\,c + b\,d + c\,d &= -\frac{3}{4} \\ \\ 4\,b\,c\,d &= \frac{\sqrt{3}}{2} \\ b\,c\,d &= \frac{\sqrt{3}}{8} \end{align*}\)

Rearranging the first equation we have \(\displaystyle \displaystyle \begin{align*} b = -c - d \end{align*}\) and substituting into the second equation we find

\(\displaystyle \displaystyle \begin{align*} \left( - c - d \right) c + \left( -c - d \right) d + c\,d &= -\frac{3}{4} \\ -c^2 - c\,d - c\,d - d^2 + c\,d &= -\frac{3}{4} \\ c^2 + c\,d + d^2 &= \frac{3}{4} \\ c^2 + c\,d + \left( \frac{d}{2} \right) ^2 - \left( \frac{d}{2} \right) ^2 + d^2 &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 + \frac{3d^2}{4} &= \frac{3}{4} \\ \left( c + \frac{d}{2} \right) ^2 &= \frac{ 3 - 3d }{4} \\ c + \frac{d}{2} &= \frac{ \pm \sqrt{ 3 - 3d }}{2} \\ c &= \frac{-d \pm \sqrt{ 3 - 3d } }{2} \end{align*}\)

and so \(\displaystyle \displaystyle \begin{align*} b = - \left( \frac{-d \pm \sqrt{ 3 - 3d }}{2} \right) - d = \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \end{align*}\)

Substituting into the final equation, we find

\(\displaystyle \displaystyle \begin{align*} \left( \frac{ - d \mp \sqrt{ 3 - 3d }}{2} \right) \left( \frac{-d \pm \sqrt{ 3 - 3d } }{2} \right) d &= \frac{\sqrt{3}}{8} \\ \left( -d \mp \sqrt{ 3 - 3d} \right) \left( -d \pm \sqrt{ 3 - 3d } \right) d &= \frac{\sqrt{3}}{2} \\ \left[ d^2 - \left( 3 - 3d \right) \right] d &= \frac{\sqrt{3}}{2} \\ d^3 + 3d^2 - 3d - \frac{\sqrt{3}}{2} &= 0 \end{align*}\)

Now making the change of variable \(\displaystyle \displaystyle \begin{align*} u = d + 1 \end{align*}\), we find

\(\displaystyle \displaystyle \begin{align*} \left( u - 1 \right) ^3 + 3 \left( u - 1 \right) ^2 - 3 \left( u - 1 \right) - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 3u^2 + 3u - 1 + 3u^2 - 6u + 3 - 3u + 3 - \frac{\sqrt{3}}{2} &= 0 \\ u^3 - 6u - \frac{\sqrt{3} - 10}{2} &= 0 \end{align*}\)

and now applying the Cubic Formula, we have

\(\displaystyle \displaystyle \begin{align*} u &= \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} + \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } + \sqrt[3]{ \frac{\frac{\sqrt{3} - 10}{2} - \sqrt{\left( \frac{\sqrt{3} - 10}{2} \right) ^2 - \frac{4 \left( - 6 \right) ^3}{27} }}{2} } \\ &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d + 1 &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } \\ d &= \sqrt[3]{ \frac{\sqrt{3} - 10 + \sqrt{ 231 - 20\sqrt{3} }}{4} } + \sqrt[3]{ \frac{\sqrt{3} - 10 - \sqrt{ 231 - 20\sqrt{3} }}{4} } - 1 \end{align*}\)

Back-substituting will enable us to evaluate b and c.

Hi Prove It, thanks for providing us this neat and well written solution and I appreciate that you took the time to participate in this problem.:)

I like Serena said:
I have always liked Cardano's method that I learned a long long time ago from a book of my father. Since I still have fond sentimental memories of it, I'm presenting it as well.

We can write the cubic expression in equation form as:
$$x^3 - \frac 3 4 x + \frac {\sqrt 3} 8 = 0 \qquad (1)$$
We substitute
$$x=y+z \qquad\qquad (2)$$
giving us a free choice for either $y$ or $z$:
\begin{array}{lcl}
(y+z)^3 - \frac 3 4 (y+z) + \frac {\sqrt 3} 8
&=&(y^3+z^3) + (3y^2z+3yz^2) - \frac 3 4 (y+z) + \frac {\sqrt 3} 8 = 0 \\
&=&(y^3+z^3) + \left(3yz - \frac 3 4\right)(y+z) + \frac {\sqrt 3} 8
\end{array}
Now we make our choice for z such that $3yz - \frac 3 4 = 0$, which will make the second term vanish.
That is, we substitute:
$$z = \frac 1 {4y} \qquad\qquad (3)$$
The result is:
\begin{array}{lcl}
(y^3+\frac 1 {4^3 y^3}) + \frac {\sqrt 3} 8 &=& 0 \\
y^6 + \frac {\sqrt 3} 8 y^3 + \frac 1 {4^3} &=& 0
\end{array}
Solving the equivalent quadratic equation gives:
$$y^3 = \frac 1 8 \left(-\frac 12 \sqrt 3 \pm \frac 1 2 i\right) = \frac 1 8 \exp\left(\pm \frac 5 6 \pi i\right)$$
The corresponding solutions are:
$$y=\frac 1 2 \exp\left(\pm \frac 5 {18} \pi i\right), \quad \frac 1 2 \exp\left(\pm \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\pm \frac {29} {18} \pi i\right)$$
Substituting in (3) gives us:
$$z=\frac 1 2 \exp\left(\mp \frac 5 {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {17} {18} \pi i\right), \quad\frac 1 2 \exp\left(\mp \frac {29} {18} \pi i\right)$$
In other words, in each case we have $z=\bar y$.
As a result, from (2) we find $x=y+z=y+\bar y=2\Re (y)$, meaning:
$$x=\cos\left( \frac 5 {18} \pi\right), \quad\cos\left( \frac {17} {18} \pi\right), \quad\cos\left( \frac {29} {18} \pi\right)$$

Therefore the solution is
$$a=4, \quad b= \cos\left( \frac 5 {18} \pi\right), \quad c=\cos\left( \frac {17} {18} \pi\right), \quad d=\cos\left( \frac {29} {18} \pi\right). \qquad \blacksquare$$

Hi I like Serena, WOW! Thank you kindly for this piece of well thought out strategic plan to tackle this cubic function!

I am so happy that all of you so generously shared the different approaches to solve this problem with me!

I love you guys!(Nerd)
 
  • #10
Hi kaliprasad, hmm...so, that blog is yours? Thanks for sharing it with us and I've checked it out and found that you have quite a collection of interesting problems in your blog! My hearty wishes for your blogging success!:)

Yes. The blog is mine and thanks for wishing me blogging success!
 

Related to Can You Match Constants to This Cubic Polynomial?

What is the "Cubic Polynomial Challenge"?

The "Cubic Polynomial Challenge" is a mathematical problem that involves finding the roots of a cubic polynomial equation, which is an equation of the form ax^3 + bx^2 + cx + d = 0. It is a commonly studied topic in algebra and calculus.

What are the main steps in solving a cubic polynomial equation?

The main steps in solving a cubic polynomial equation are: 1) identifying the values of a, b, c, and d, 2) using the cubic formula or other methods to find the roots, and 3) checking the solutions to ensure they are correct.

What are the different methods for solving cubic polynomial equations?

There are several methods for solving cubic polynomial equations, including using the cubic formula, factoring, and using the rational root theorem. The most common method is using the cubic formula, which involves plugging in the values of a, b, c, and d into the formula to find the roots.

How do you know if a cubic polynomial equation has complex roots?

A cubic polynomial equation will have complex roots if the discriminant, b^2 - 4ac, is negative. This indicates that the solutions will involve imaginary numbers. If the discriminant is positive, the solutions will be real numbers. If the discriminant is zero, there will be a repeated real root.

Why is solving cubic polynomial equations important?

Solving cubic polynomial equations is important in many fields, including engineering, physics, and economics. It allows for the calculation of important quantities such as maximum and minimum values, inflection points, and optimization problems. It is also a fundamental skill in mathematics and helps develop problem-solving and critical thinking skills.

Similar threads

Replies
15
Views
2K
Replies
19
Views
2K
Replies
2
Views
855
  • General Math
Replies
7
Views
917
Replies
3
Views
903
Replies
9
Views
2K
Replies
5
Views
1K
  • General Math
Replies
5
Views
1K
  • General Math
Replies
16
Views
3K
Replies
1
Views
861
Back
Top