MHB Can You Meet the Sine Function Challenge?

Click For Summary
The discussion centers on proving that if the sum of the sines of three angles \(a\), \(b\), and \(c\) is at least \(\frac{3}{2}\), then the sum of the sines of those angles each shifted by \(-\frac{\pi}{6}\) is non-negative. Participants explore the properties of the sine function and its behavior under transformations. The challenge emphasizes the relationship between the original sine values and their shifted counterparts. The proof requires understanding the periodicity and symmetry of the sine function. Ultimately, the goal is to establish the inequality based on the initial condition provided.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be real numbers such that $\sin a+\sin b+\sin c\ge \dfrac{3}{2}$. Prove that

$\sin \left(a-\dfrac{\pi}{6}\right)+\sin \left(b-\dfrac{\pi}{6}\right)+\sin \left(c-\dfrac{\pi}{6}\right)\ge 0$.
 
Mathematics news on Phys.org
Assume for contradiction that $\sin \left(a-\dfrac{\pi}{6}\right)+\sin \left(b-\dfrac{\pi}{6}\right)+\sin \left(c-\dfrac{\pi}{6}\right)< 0$

Then by the addition and subtraction formulas, we have

$\dfrac{1}{2}(\cos a+\cos b+\cos c)>\dfrac{\sqrt{3}}{2}(\sin a+\sin b+\sin c)\ge \dfrac{3\sqrt{3}}{4}$

It follows that

$\cos a+\cos b+\cos c>\dfrac{3\sqrt{3}}{2}$

which implies that

$\begin{align*}\sin \left(a+\dfrac{\pi}{3}\right)+\sin \left(b+\dfrac{\pi}{3}\right)+\sin \left(c+\dfrac{\pi}{3}\right)&=\dfrac{1}{2}(\sin a+\sin b+\sin c)+\dfrac{\sqrt{3}}{2}(\cos a+\cos b+\cos c)\\&=\dfrac{1}{2}\cdot \dfrac{3}{2}+\dfrac{\sqrt{3}}{2}\cdot \dfrac{3\sqrt{3}}{2}\\&=3\end{align*}$

which is impossible because $\sin x\le 1$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
951
  • · Replies 2 ·
Replies
2
Views
2K