MHB Can You Prove $a > \sqrt[9]{8}$ is a Root of a Polynomial with $1 < a < 2$?

AI Thread Summary
The discussion centers on proving that if \(1 < a < 2\) and \(a\) is a root of the polynomial \(x^5 - x - 2 = 0\), then \(a > \sqrt[9]{8}\). Participants acknowledge the importance of maintaining strict inequalities in their proofs. There is a focus on correcting previous misunderstandings regarding the inclusion of equality in the inequality. The conversation highlights the collaborative nature of problem-solving in mathematical discussions. Ultimately, the goal is to establish the relationship between the root \(a\) and the value \(\sqrt[9]{8}\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $1\lt a \lt 2$, $a$ is a root of the equation $x^5-x-2=0$. Prove that $\large a>\sqrt[9]{8}$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Let $1\lt a \lt 2$, $a$ is a root of the equation $x^5-x-2=0$. Prove that $\large a>\sqrt[9]{8}$.

let $f(x) = x^5-x-2=0$ then we have $f(1) = - 2$ , $f(2)= 28$ and $\frac{df}{dx} = 5x^4 -1 >=0$ for $ x> 1$
so f(1) is -ve and f(2) is + ve and f(x) is increasing in given range from 1 2 (other value
$>$ 1 also but we are not bothered)
if $a > \sqrt[9]8$ for a to be root $f(\sqrt[9]8 = \sqrt[3]2)$ is -ve
$f(\sqrt[3]2) = \sqrt[3]2^5 - \sqrt[3]2 -2= 2 *\sqrt[3]2^2 - \sqrt[3]2 - 2\cdots(1)$
Now $\frac{1}{2}(2 + \sqrt[3]2) >= \sqrt{2 \sqrt[3]2}= \sqrt[3]2^2$
or $2 + \sqrt[3]2 >= 2\sqrt[3]2^2$
from (1) and above we have $f(\sqrt[3]2) < 0 $ hence $a > \sqrt[9]8$
 
Well done, kaliprasad! And thanks for participating!(Cool)

My solution:

Since $a$ is a root of the equation $x^5-x-2=0$, we get the relation:

$a^5-a-2=0$

$a^5=a+2$(*)

Since $a$ is a positive real, we can apply the AM-GM inequality to the expression:

$a+2\ge 2\sqrt{2a}$

Now, we replace (*) into the inequality above to obtain:

$a^5\ge 2\sqrt{2a}$

Squaring both sides yields:

$a^{10}\ge 8a$

Again, since $a$ is a positive real, we can divide through the inequality above by $a$, and then taking ninth root on both sides of the inequality and the result follows:

$a^9\ge 8$

$a\ge \sqrt[9]{8}$ (Q.E.D.)
 
anemone said:
Well done, kaliprasad! And thanks for participating!(Cool)

My solution:

Since $a$ is a root of the equation $x^5-x-2=0$, we get the relation: $a\ge \sqrt[9]{8}$ (Q.E.D.)

we are supposed to prove $a\ > \sqrt[9]{8}$
 
kaliprasad said:
we are supposed to prove $a\ > \sqrt[9]{8}$

Ops...it was my bad...I should have realized the strict inequality should be in place but not including the "equal to" sign...

I will re-post my solution here of the correct version of my solution:

anemone said:
My solution:

Since $a$ is a root of the equation $x^5-x-2=0$, we get the relation:

$a^5-a-2=0$

$a^5=a+2$(*)

Since $a$ is a positive real, we can apply the AM-GM inequality to the expression:

$a+2\gt 2\sqrt{2a}$ (since $a\ne 2$)

Now, we replace (*) into the inequality above to obtain:

$a^5\gt 2\sqrt{2a}$

Squaring both sides yields:

$a^{10}\gt 8a$

Again, since $a$ is a positive real, we can divide through the inequality above by $a$, and then taking ninth root on both sides of the inequality and the result follows:

$a^9\gt 8$

$a\gt \sqrt[9]{8}$ (Q.E.D.)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top