MHB Can You Prove that AC//BD and AF//BE are Parallel in this Geometry Problem?

  • Thread starter Thread starter mirasjg
  • Start date Start date
Click For Summary
In the geometry problem involving two intersecting circles, a straight line CDEF is formed by extending chord CD to points E and F on the second circle. The common chord AB intersects line CF at point M, which is the midpoint of CF, and angle CAF is established as 90 degrees. To prove that lines AC and BD are parallel, one can construct a circle centered at M with radius CM, which also passes through points C, F, and A. This configuration leads to triangle CMA being isosceles, indicating that its base angles are equal, thus establishing that BD is parallel to AC. The conclusion is that both AC//BD and AF//BE are confirmed as parallel lines.
mirasjg
Messages
1
Reaction score
0
Two circles meet at A and B. A chord CD of one circle is produced to meet the other circle at E and F so that CDEF is a straight line, as shown. The common chord AB is produced to meet the line CF at a point M between D and E. If M is the midpoint of CF and angle CAF=90 degrees, prove that AC//BD and AF//BE are parallel.
 
Mathematics news on Phys.org
mirasjg said:
Two circles meet at A and B. A chord CD of one circle is produced to meet the other circle at E and F so that CDEF is a straight line, as shown. The common chord AB is produced to meet the line CF at a point M between D and E. If M is the midpoint of CF and angle CAF=90 degrees, prove that AC//BD and AF//BE are parallel.
The picture is not there "as shown", but from your description it should look like this:
[TIKZ]\draw (-3.5,1.3) circle (3.734cm) ;
\draw (2.1,1.3) circle (2.47cm) ;
\coordinate [label=right:$A$] (A) at (0,0) ;
\coordinate [label=right:$B$] (B) at (0,2.6) ;
\coordinate [label=above:$C$] (C) at (-4,5) ;
\coordinate [label=above:$D$] (D) at (-1,4.25) ;
\coordinate [label=above right:$M$] (M) at (0,4) ;
\coordinate [label=above:$E$] (E) at (1.5,3.75) ;
\coordinate [label=above:$F$] (F) at (4,3.1) ;
\draw (-4,5) -- (4,3) ;
\draw (0,-1) -- (0,5) ;
[/TIKZ]
As a hint, draw a circle centred at $M$, with radius $CM$. This circle passes through $C$ (obviously). It also passes through $F$ (almost as obviously) and through $A$ (why is that??). It then follows that the triangle $CMA$ is isosceles, so its base angles are equal. Use that fact to deduce that $BD$ is parallel to $AC$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K