Can (Z/10557Z)* be written as Cn1 x Cn2 x Cn3 with n1 dividing n2 dividing n3?

  • Thread starter Thread starter RVP91
  • Start date Start date
  • Tags Tags
    Groups
RVP91
Messages
50
Reaction score
0
If I was to try to work this out I would use the Chinese Remainder Theorem and since 10557 = 3^3 . 17 . 23
end up with (Z/10557Z)* isomorphic to (Z/27Z)* x (Z/17Z)* x (Z/23Z)* isomorphic to C18 x C16 x C22 where Cn represents the Cyclic group order n.

How would I then write this as Cn1 x Cn2 x Cn3 s.t. n1 divides n2 divides n3?
 
Physics news on Phys.org
this is explained in section 17 of these free notes:

http://www.math.uga.edu/%7Eroy/844-2.pdf and probably in many other algebra books.
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top