Canned motor design rotor magnetics

  • Thread starter Thread starter artis
  • Start date Start date
AI Thread Summary
Canned motors, commonly used in pumps, feature a squirrel cage rotor enclosed within a sealed metal can, raising questions about how induced currents occur despite the presence of metal barriers. The design typically includes two cylindrical metal sheets, which can be made from thin stainless steel with high electrical resistance, minimizing eddy currents. The three-phase rotating field creates effective poles larger than the gaps between stator windings, leading to large eddy current loops with long resistive paths. Induced currents in the metal sleeves produce reverse fields that partially cancel the rotating field, allowing some current induction in the rotor. The interaction of the rotating stator field and the metal sleeves results in a complex cancellation effect, influencing the overall magnetic field dynamics.
artis
Messages
1,479
Reaction score
976
Randomly stumbled upon the canned motor , usually used for pumps to avoid a dynamic seal between the pump fluid and atmosphere.
What I cannot understand is this. It is a AC induction motor but the squirrel cage rotor is wrapped inside a sealed metal outer can. On top of that most designs also have a second steel sheet cylinder separating the rotor fluid compartment and stator.
That makes two cylindrical metal sheets between the stator and rotor squirrel cage bars.

So a simple question - how does the rotor bars get any induced current in them at all? Because from what I recall about EM a continual conducting sheet applied to a changing time varying magnetic field causes very strong eddy currents that oppose the applied field.

So what is the trick here? The metal cylinder made from an alloy of poor conductance and thin to minimize the eddy currents or else?
 
Engineering news on Phys.org
artis said:
The metal cylinder made from an alloy of poor conductance and thin to minimize the eddy currents or else?
Yes, thin stainless steel can be non-magnetic and have quite a high electrical resistance.

The rotating field is three-phase, so the effective poles of the rotating field are much larger than the gaps between the stator windings. The eddy current loops are therefore large, so have long peripheral resistive conduction paths.

The currents induced in the sleeve produce a reverse field that only cancels a small part of the rotating field.
 
Could it also be that having a 3 phase stator field, the reverse fields and currents produced within the two metal cylinder sleeves that are between the stator and rotor have currents that also cancel one another , at least partially ?

Somewhat similarly how a set of parallel loops that share one common conductor moved across magnet poles all get induced current in the same direction therefore the existence of the common conductor causes current cancellation?
 
artis said:
Could it also be that having a 3 phase stator field, the reverse fields and currents produced within the two metal cylinder sleeves that are between the stator and rotor have currents that also cancel one another , at least partially ?
I think the (rotating) stator field will induce eddy currents in the first sleeve that will partly cancel the incident field in that forward direction. That reduces the magnitude, but does not change the sign of the magnetic field that passes through the first sleeve, to reach the second sleeve, where a similar attenuation occurs again.

If the sleeve was a perfect conductor, the entire incident field onto the sleeve would be cancelled in the forward direction, while all the magnetic field would be reflected back to the field windings.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top