A Canonical quantisation of the EM field

Mr-R
Messages
123
Reaction score
23
I have just gone through chapter 14 on the QFT for the gifted amateur by Lancaster and Blundell. Quantising the electromagnetic field results in the Hamiltonian:
$$\hat{H}=\int d^3p \sum^{2}_{\lambda=1} E_p \hat{a}^\dagger_{p\lambda} \hat{a}_{p\lambda}$$
with ##E_p=|p|##. In this post ##p## represents the momentum 3-vector.
My question is; how does the concept vacuum energy apply here? I think what is puzzling me is the fact that I see many authors arrive at this result:
$$\hat{H}=\sum_{p\lambda}\hbar \omega_p (\hat{a}^\dagger_{p\lambda}\hat{a}_{p\lambda}+\frac{1}{2})$$.
Also, the previous expression has an integration over ##p## as opposed to a sum.
Maybe I am comparing it to the wrong Hamiltonian, but I think that after applying normal ordering I get rid of the 1/2 term.
 
Physics news on Phys.org
The vacuum energy is subtracted in the first expression, and that's the correct one, because the 2nd is obviously divergent. In the usual formalism you call this description "normal ordering". The socalled "vacuum energy" is anyway unobservable within special relativity since there you can measure only energy differences and not the absolute energy of a system. This is a first (almost trivial) example for "renormalizing" an observable quantity like the energy of the electromagnetic field, whose associated operator is given by your first expression.
 
  • Like
Likes Mr-R
Yes that makes sense. Now I remember going through that infinite energy problem. Cheers!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top