Capacitor and Dielectric: Charge, Arrangement, and Extraction Calculations

AI Thread Summary
The discussion focuses on the behavior of two capacitors, C1 and C2, when connected in a series circuit after being charged by a battery. Initially, C1 has a charge of 120 µC and C2 has 180 µC, leading to a charge redistribution when connected, resulting in plate D having a charge of -36 µC. The participants clarify that the voltage across both capacitors must be equal, which affects how the charges split between the plates. There is also confusion regarding the potential changes on plates A and B after the connection, highlighting the importance of understanding charge distribution and potential differences in capacitors. The conversation emphasizes the principles of capacitor behavior and charge conservation in electrical circuits.
spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement



A ##12 \mu F## capacitor ##C_{1}## consists of plates ##A## and ##B##. An ##18 \mu F## capacitor ##C_{2}## consists of plates ##C## and ##D##.

(a) Each are charged up by a ##10 V## battery such that plates ##A## and ##C## are positively charged. They are disconnected from the battery and connected into a series circuit with plate ##A## connected to plate ##D## and plate ##B## connected to plate ##C##, and the system allowed to come to equilibrium. What charge is now on plate ##D##?

(b) Both capacitors ##C_{1}## and ##C_{2}## have square plates of side ##x_{1}## cm and plate separation ##d## cm. The difference is that ##C_1## has only air between its plates, but ##C_2## also has a square plate of dielectric of side ##x_1##, relative permittivity ##\epsilon_{r}## and thickness ##t##. In terms of ##\epsilon_{r}##, what fraction ##(t/d)## of the gap is occupied by the dielectric?

(c) Capacitor ##C_2## is again charged up by a battery of voltage ##V##, and remains connected to it. What force is required to extract the plate of dielectric from the gap? Give answer in terms of ##V## and ##x_1##.

Homework Equations



The Attempt at a Solution



(a) Charge on capacitor ##C_1## is ##Q=CV=120 \mu C##, and charge on capacitor ##C_2## is ##Q=CV=180 \mu C##

Now the arrangement of the capacitors in the series circuit is as follows:

Untitled.jpg


Therefore, after redistribution of charges among plates ##D## and ##A##, an excess negative charge of ##60 \mu C## will remain on the wire connecting plates ##D## and ##A##. Therefore, the charge on plate ##D## is ##-30 \mu C##.

Am I correct so far?
 
Physics news on Phys.org
failexam said:

Homework Statement



A ##12 \mu F## capacitor ##C_{1}## consists of plates ##A## and ##B##. An ##18 \mu F## capacitor ##C_{2}## consists of plates ##C## and ##D##.

(a) Each are charged up by a ##10 V## battery such that plates ##A## and ##C## are positively charged. They are disconnected from the battery and connected into a series circuit with plate ##A## connected to plate ##D## and plate ##B## connected to plate ##C##, and the system allowed to come to equilibrium. What charge is now on plate ##D##?

(b) Both capacitors ##C_{1}## and ##C_{2}## have square plates of side ##x_{1}## cm and plate separation ##d## cm. The difference is that ##C_1## has only air between its plates, but ##C_2## also has a square plate of dielectric of side ##x_1##, relative permittivity ##\epsilon_{r}## and thickness ##t##. In terms of ##\epsilon_{r}##, what fraction ##(t/d)## of the gap is occupied by the dielectric?

(c) Capacitor ##C_2## is again charged up by a battery of voltage ##V##, and remains connected to it. What force is required to extract the plate of dielectric from the gap? Give answer in terms of ##V## and ##x_1##.

Homework Equations



The Attempt at a Solution



(a) Charge on capacitor ##C_1## is ##Q=CV=120 \mu C##, and charge on capacitor ##C_2## is ##Q=CV=180 \mu C##

Now the arrangement of the capacitors in the series circuit is as follows:

Untitled.jpg


Therefore, after redistribution of charges among plates ##D## and ##A##, an excess negative charge of ##60 \mu C## will remain on the wire connecting plates ##D## and ##A##. Therefore, the charge on plate ##D## is ##-30 \mu C##.

Am I correct so far?

I haven't worked out the answer, but how do you know that the negative charge splits evenly between plates A and D?
 
Oh wait! The voltage across the two capacitors must be the same in magnitude, so the charge of ##-60 \mu C## must divide between plates ##A## and ##D## in the ratio of their capacitances.

##C_{1}:C_{2} = 2:3##, so charge on plate ##D = -36 \mu C##, and charge on plate ##A = -24 \mu C##.

Am I correct so far?
 
failexam said:
Oh wait! The voltage across the two capacitors must be the same in magnitude, so the charge of ##-60 \mu C## must divide between plates ##A## and ##D## in the ratio of their capacitances.

##C_{1}:C_{2} = 2:3##, so charge on plate ##D = -36 \mu C##, and charge on plate ##A = -24 \mu C##.

Am I correct so far?

I think that's right.
 
Ok, but I am confused about one aspect of my solution.

The voltage drop across capacitor ##CD## going from ##C## to ##D## must be equal to the voltage drop across capacitor ##BA## going from ##B## to ##A##. Also, plate ##C## is at a higher potential than plate ##D##. Doesn't that mean that plate ##B## must be at a higher potential than plate ##A##?
 
failexam said:
Ok, but I am confused about one aspect of my solution.

The voltage drop across capacitor ##CD## going from ##C## to ##D## must be equal to the voltage drop across capacitor ##BA## going from ##B## to ##A##. Also, plate ##C## is at a higher potential than plate ##D##. Doesn't that mean that plate ##B## must be at a higher potential than plate ##A##?

Yes. Any two points connected by a conductor (no resistance) are at the same potential, so B&C are the same potential, and A&D are at the same potential.
 
In that case, isn't plate ##A## positively charged before it was connected to the capacitor ##CD##, but afterwards, plate ##A## became negatively charged due to distribution of charge between the plates ##A## and ##D##?

And similarly, isn't plate ##B## negatively charged before it was connected to the capacitor ##CD##, but afterwards, plate ##B## became positively charged due to distribution of charge between the plates ##B## and ##C##?
 
Back
Top