Capacitor connected to voltage source, vary plate separation

  • Context: Undergrad 
  • Thread starter Thread starter greypilgrim
  • Start date Start date
  • Tags Tags
    Voltage source
Click For Summary

Discussion Overview

The discussion revolves around the behavior of a plate capacitor connected to a constant voltage source as the separation between the plates is varied. Participants explore the implications of changing the plate distance on the stored energy, the forces involved, and the role of the voltage source in this dynamic. The conversation touches on theoretical considerations and practical scenarios, including energy loss and work done against attractive forces.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants note that the energy stored in the capacitor decreases with increasing plate separation, which they find counterintuitive given the attractive forces between oppositely charged plates.
  • Others suggest that when the distance between the plates increases, work must be done against the attractive force, and this work results in energy being stored in the electric field.
  • A participant raises the idea that the energy in the capacitor could be considered negative due to the nature of the charges, leading to confusion about energy changes as the distance varies.
  • Some argue that the energy dynamics involve both the energy stored in the capacitor and the work done by an external force to separate the plates, with the voltage source supplying energy as charge flows.
  • One participant emphasizes the importance of considering the energy required to maintain the voltage when the plate separation changes, suggesting that energy is drawn from the source to maintain the system's conditions.
  • Another participant introduces the concept of ohmic resistance and energy loss as heat in practical scenarios, contrasting with ideal cases where such losses are neglected.

Areas of Agreement / Disagreement

Participants express a range of views on the energy dynamics involved in varying the plate separation of the capacitor. There is no consensus on the interpretation of energy changes, the role of the voltage source, or the implications of these changes on the system's behavior.

Contextual Notes

Some participants highlight the complexities of the scenario, including the need to account for currents to and from the voltage source, the effects of resistance, and the assumptions made in ideal versus real-world conditions.

Who May Find This Useful

This discussion may be of interest to those studying capacitor behavior in electrical circuits, particularly in contexts involving varying conditions and energy dynamics, as well as those exploring theoretical versus practical implications in physics.

greypilgrim
Messages
581
Reaction score
44
Hi.

A plate capacitor is connected to a constant voltage source. The stored energy is
$$W=\frac{1}{2}\cdot C\cdot U^2=\frac{1}{2}\cdot \varepsilon_0\frac{A}{d}\cdot U^2\propto\frac{1}{d}$$
if the voltage source remains connected when varying ##d##.

So the energy decreases with increasing ##d##. This is a bit counterintuitive to me. If the plates are allowed to move freely, they should attract because they are oppositely charged. On the other hand, systems strive for lower energy states, which means they should repel.

My guess is that I have to somehow include the currents to or from the voltage source while ##d## changes (since ##Q## is not constant), but I'm not sure how to do so.
 
Physics news on Phys.org
What is happening in real world scenario where the source and the conducting paths have ohmic resistance is that the energy is lost as heat in these ohmic resistance as the charge flows from one plate to the other through the source.

When we increase the distance d the energy stored in the capacitor becomes that ohmic heat.

When we decrease the distance d the source provides the energy both for the increase in energy in capacitor and for the energy lost as heat.

I don't know how one can explain it in case of ideal source and ideal conducting paths. But I know that there are many little paradox hidden in physics when we take ideal cases.
 
In this scenario you keep the voltage constant. The energy you describe is the energy of the electric field between the plates. When making ##d## larger you have to do work against the attracting force between the plates, and keeping ##U## constant means that energy is stored in the electric field between the plates.
 
vanhees71 said:
In this scenario you keep the voltage constant. The energy you describe is the energy of the electric field between the plates. When making ##d## larger you have to do work against the attracting force between the plates, and keeping ##U## constant means that energy is stored in the electric field between the plates.
I thought of that too but since we provide work, the energy in the capacitor should increase not decrease.
 
  • Like
Likes   Reactions: vanhees71
Oh wait, don't tell me the energy in the capacitor is in fact negative number, since the plates are charged opposite, so when it decreases (in absolute value as d increases) in fact it is increasing...
 
greypilgrim said:
So the energy decreases with increasing ##d##. This is a bit counterintuitive to me. If the plates are allowed to move freely, they should attract because they are oppositely charged. On the other hand, systems strive for lower energy states, which means they should repel.
For objects which repel, a 'lower energy state' requires them to be further apart.

For objects which attract, a 'lower energy state' requires them to be closer.

And don't forget the capacitor is not an isolated system - energy (and charge) flow between the capacitor and the supply when ##d## changes.

greypilgrim said:
My guess is that I have to somehow include the currents to or from the voltage source while ##d## changes (since ##Q## is not constant), but I'm not sure how to do so.
The plates are attracted. To increase the separation (I'll use '##x##' rather than '##d##') the plates must be pulled apart.

Say one plate is fixed and a net outwards force, ##F##, is applied to the other plate to maintain equilibrium.

Now suppose ##F## is (very slowly) increased so that ##x##increases. Note that ##F## will decrease as ##x## increases. The work done by ##F## is ##\int_{x_1}^{x_2} F(x)dx##.

##C, Q## (charge on capacitor plates) and ##E## (electrical potential energy stored in capacitor) will decrease.

Charge is being ‘pushed back’ into the supply (like charging a battery). So the supply’s energy increases.
 
  • Like
Likes   Reactions: vanhees71
Delta2 said:
I thought of that too but since we provide work, the energy in the capacitor should increase not decrease.
The field energy changes by
$$\mathrm{d} W=\frac{U^2}{2} \mathrm{d} C=-\frac{\epsilon_0 A U^2 }{2d^2 }\mathrm{d} d.$$
For the charge transport you need the energy (to be brought up from the battery)
$$\mathrm{d} W_Q=U \mathrm{d} Q=U^2 \mathrm{d} C=2 \mathrm{d} W<0,$$
i.e., in fact the battery takes up energy, which has to be put in as work energy when increasing the distance of the capacitor plates, i.e., the work is used to charge the battery.
 
  • Like
Likes   Reactions: Steve4Physics
Steve4Physics said:
Charge is being ‘pushed back’ into the supply (like charging a battery). So the supply’s energy increases.
This sounds like a very good explanation to me.

BUT

The increase in the energy of the supply comes from the energy stored in capacitor (which decreases), the work done by the external force that separates the plates or both?
 
Delta2 said:
The increase in the energy of the supply comes from the energy stored in capacitor (which decreases), the work done by the external force that separates the plates or both?
That's a good question. I think the answer is 'both'. I'm assuming ohmic heating and EM radiation losses (due to accelerating charges) can be neglected here - but am happy to be corrected!
 
  • Like
Likes   Reactions: vanhees71
  • #10
greypilgrim said:
Hi.

A plate capacitor is connected to a constant voltage source. The stored energy is
$$W=\frac{1}{2}\cdot C\cdot U^2=\frac{1}{2}\cdot \varepsilon_0\frac{A}{d}\cdot U^2\propto\frac{1}{d}$$
if the voltage source remains connected when varying ##d##.

So the energy decreases with increasing ##d##. This is a bit counterintuitive to me. If the plates are allowed to move freely, they should attract because they are oppositely charged. On the other hand, systems strive for lower energy states, which means they should repel.

My guess is that I have to somehow include the currents to or from the voltage source while ##d## changes (since ##Q## is not constant), but I'm not sure how to do so.
I think you are not giving enough thought about the energy or work done to produce the voltage that you are applying to the plates in the first place. It is that energy that is being used to attract the capacitor plates to each other. It is best just to go back to first principles by considering the 18th century electrophorus device. Here is a section taken from Wikipedia after entering Electrophorus in the search panel.
1704811530945.png


It fascinated people at the time because it seemed as though one could pick up a charge onto the upper plate and then make that plate do work by discharging it elsewhere and then replace it onto the resin (i.e. the dielectric) to recharge it and keep repeating the trick “endlessly” in the short term at least. What is actually going on is that the polarized resin is acting as an electret which is the electrostatic equivalent of a permanent magnet. Each time the upper electrode is placed on it there is an attractive force acting on it which requires energy from somebody’s arm muscles to lift it off . Also the device had to have arm energy used to transfer electrons from a piece of fur onto the device in the first place.
 

Similar threads

  • · Replies 59 ·
2
Replies
59
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K