Capicatance & magnitude of capacitor

AI Thread Summary
The discussion revolves around calculating the capacitance of a spherical capacitor with inner radius a and outer radius b filled with epoxy, connected to a voltage V. The user expresses confusion over the appropriate equations, particularly regarding the absence of voltage and the dielectric constant in their calculations. They initially used the formula C=4∏ε0(ab/b-a) but found it inadequate, prompting questions about the role of voltage and charge. Responses suggest that the user needs to review the relevant chapter to grasp the fundamental concepts of capacitors better. Understanding the derivation of the equations and the principles behind them is essential for solving the problem effectively.
Alouette
Messages
35
Reaction score
0

Homework Statement


There's a spherical capacitor, inner radius a and outer radius b, with a filling in between of epoxy, and also connected to battery of voltage V. What is the capacitance?

Also, what is magnitude of surface charge density outer shell?

Homework Equations


For Q1
1)C=4∏ε0(ab/b-a)

2)C = Q/ΔV

3)C = κC0

For Q2
s=Q/4∏r2

The Attempt at a Solution


Used above equation, but it doesn't include any voltage V nor dialelectric constant κ. Are these the right equations?

Haven't attempted Q2 since it seems to require C/m2 as units for answer...
 
Physics news on Phys.org
First you show the attempt. Then only we will know how to help
 
Sure. Except I already did. I said I used C=4∏ε0(ab/b-a) but this gave me the wrong answer. I noticed that it didn't even used V or dialelectric constant κ, but I'm unable to find how these fit it. The only other equations I found involving them were equations 2) and 3).

C = Q/ΔV , this has V but I'm unsure how there's a change in V when they gave me just a constant voltage. Also there wasn't any charge in the question either...

C = κC0, I would have to use the equation 1) C and then multiply by epoxy constant, which I found to be either 3.9, 4.1, or 4.4, not sure which one but I was going to plug them into find out.
 
4*π*k*ε/((1/a)-(1/b)), where k is 3.6 and ε is 8.85e-12

I don't understand where these equations come from...

the 4πε is from the charge of the sphere?

why the subtraction of inverses?

Not looking for a detailed lecture, just a simple explanation would do to better help me understand the process of arriving at this answer.
 
Last edited:
Do a web search on "spherical capacitor". The Hyperphysics site has some appropriate info.
 
seems to me that you are attempting the question without studying the chapter. You don't have a clear idea of what capacitor is. The question you have asked is quite very simple. I don't know how to help you with this question as it is only formula based. I would advice you to first go through the chapter once then only attempt the question
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top