I know this is an old thread but reading it has helped me refresh my understanding of probability calculations.
However - I am having trouble getting the exact solution jcsd came up with. I approached the problem for the case where you have a 7 card hand with only three suits represented. The only way to have that seniario is for NO cards of a given suite to be in the dealt hand which means you only have 39 of the 52 cards in the deck from which to make up your hand. The total number of unique 7 card hands that can be made from only 39 cards (3 suites present) would be combine(39,7), or 15,380,937. Since any of the 4 suites could be absent you would multiply that number by 4 to get 61,523,748.
Repeating that process for the case where 2 suits are missing (combine(26,7) * 6) and the case where 3 suits are missing (combine(13,7) * 4) you come up with a total number of hands that don't have at least 1 of each suite represented by adding these three, or 61,523,748 (3 suites) + 3,946,800 (2 suites) + 6,864 (all 1 suite) = 65,477,412.
Dividing the number of possible hands without all four suits present by the total number of 7 card hands that could be made from 52 cards and subtracted from 1 should be the probability of having all four suites present. The solution I get from the above exercise is 0.5106, not 0.5696.