yaa09d
- 13
- 0
Let V be a vector space over an infinite field $\mathbf{k}$. Let \beta be a basis of V.
In this case we can write
V\cong \mathbf{k}^{\oplus \beta}:=\bigl\{ f\colon\beta\to \mathbf{k}\bigm| f(\mathbf{b})=\mathbf{0}\text{ for all but finitely many }\mathbf{b}\in\beta\bigr\}.<br />
Q:Show that card(V) = card(\mathbf{k}) card(\beta)
Can anyone help?
In this case we can write
V\cong \mathbf{k}^{\oplus \beta}:=\bigl\{ f\colon\beta\to \mathbf{k}\bigm| f(\mathbf{b})=\mathbf{0}\text{ for all but finitely many }\mathbf{b}\in\beta\bigr\}.<br />
Q:Show that card(V) = card(\mathbf{k}) card(\beta)
Can anyone help?
