I should have clarified I was speaking about the observable universe, which includes everything inside our particle horizon. We still receive photons emitted from the surface of last scattering, which I assume we all agree was receeding at superluminal velocity when the photons we now observe were emitted. Davis and Lineweaver explained this in
http://arxiv.org/abs/astro-ph/0310808
A quote of interest from section 3.3. of the paper
"Our teardrop shaped past light cone in the top panel of Fig. 1 shows that any
photons we now observe that were emitted in the first ∼ five billion years were emitted
in regions that were receding superluminally, vrec > c. Thus their total velocity was
away from us. Only when the Hubble sphere expands past these photons do they move
into the region of subluminal recession and approach us. The most distant objects
that we can see now were outside the Hubble sphere when their comoving coordinates
intersected our past light cone. Thus, they were receding superluminally when they
emitted the photons we see now. Since their worldlines have always been beyond the
Hubble sphere these objects were, are, and always have been, receding from us faster
than the speed of light."