I Cartan's Understanding of Einstein Field Equation

dx
Homework Helper
Messages
2,143
Reaction score
52
TL;DR Summary
Cartan and general relativity
About a week ago I was reading about Cartan's geometric interpretation of the Einstein Field Equation

Gij + Λgij = κTij

According to Cartan, this equation expresses the idea

(sum of moments of rotation for the faces of a little 3-cube) = 8π * (amount of energy-momentum within that 3-cube)

As far as I can tell, it is only in John Wheeler's various books (MTW, but also his other books) where this idea of Cartan is explained. None of the other popular books like Wald discuss this. Apparently, it was Wheeler who dug it out of Cartan's papers and made it widely known. If anyone on this forum has a good understanding of this, I would appreciate it if you can share/explain this. Also, why don't more people and books adopt this viewpoint? Is it because Cartan's coordinate free differential geometry is too sophisticated?
 
Last edited by a moderator:
Physics news on Phys.org
Frankly I don't know why...Btw MTW has also a section for the Cartan's geometric interpretation of Newton spacetime (basically the Poisson equation).
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top