I Cartan's Understanding of Einstein Field Equation

dx
Homework Helper
Messages
2,143
Reaction score
52
TL;DR Summary
Cartan and general relativity
About a week ago I was reading about Cartan's geometric interpretation of the Einstein Field Equation

Gij + Λgij = κTij

According to Cartan, this equation expresses the idea

(sum of moments of rotation for the faces of a little 3-cube) = 8π * (amount of energy-momentum within that 3-cube)

As far as I can tell, it is only in John Wheeler's various books (MTW, but also his other books) where this idea of Cartan is explained. None of the other popular books like Wald discuss this. Apparently, it was Wheeler who dug it out of Cartan's papers and made it widely known. If anyone on this forum has a good understanding of this, I would appreciate it if you can share/explain this. Also, why don't more people and books adopt this viewpoint? Is it because Cartan's coordinate free differential geometry is too sophisticated?
 
Last edited by a moderator:
Physics news on Phys.org
Frankly I don't know why...Btw MTW has also a section for the Cartan's geometric interpretation of Newton spacetime (basically the Poisson equation).
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top