Casimir effect in 1+1 Minkowski spacetime

Click For Summary

Homework Help Overview

The discussion revolves around the Casimir effect in 1+1 Minkowski spacetime, specifically focusing on the vacuum energy and the derivation of related equations. Participants are exploring the implications of boundary conditions on the Hamiltonian and the nature of the modes involved.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to understand the derivation of the Hamiltonian and its relation to boundary conditions. Questions arise about the transition from continuous to discrete modes and the appropriateness of using Dirac delta functions in this context.

Discussion Status

The discussion is ongoing, with participants providing insights and raising questions about the derivation process and the implications of boundary conditions. Some guidance has been offered regarding the nature of the modes and the need to consider discrete values.

Contextual Notes

Participants are working under the constraints of specific boundary conditions and are questioning how these affect the derivation of equations and the interpretation of the Hamiltonian. There is an acknowledgment of the need to reconcile continuous and discrete spectra in the context of the problem.

Emil_M
Messages
45
Reaction score
2

Homework Statement



https://i.imgur.com/sI3JiB4.jpg
https://i.imgur.com/PLpnPZw.jpg
I have no idea how to solve the first question about the vacuum energy. I solved the second and third problems, but I'm hopelessly stuck at the first.

2. Homework Equations

The Hamiltonian can be written as ##H_H=\int \frac{\mathrm{d} k}{2 \pi 2\omega_k}\left(A(k) A^\dagger (k)+A^\dagger (k) A(k) \right)## and the canonical commutation relations apply:

##[A(k), A(k')]=0, [A^\dagger(k), A^\dagger(k')]=0, [A(k), A^\dagger (k')]=2 \pi 2 \omega_k \delta(k-k')##

The Attempt at a Solution



The trouble is that I have no idea how to begin to solve this question.
 
Last edited:
Physics news on Phys.org
Do you know how equation (2) was derived? From the problem statement, it sounds like it was derived in lecture.

Equation (4), which you need to show, is essentially repeating the derivation of equation (2) but taking the boundary conditions in equation (3) into account.
 
Emil_M said:
##[A(k), A^\dagger (k')]=2 \pi 2 \omega_k \delta(k-k')##

This won't be true here.

"Argue heuristically" means use classical waves and boundary conditions to find the modes, which will be a discrete set, so a Dirac delta function is not appropriate.
 
king vitamin said:
Do you know how equation (2) was derived? From the problem statement, it sounds like it was derived in lecture.

Equation (4), which you need to show, is essentially repeating the derivation of equation (2) but taking the boundary conditions in equation (3) into account.
Thank you for your reply! I derived equation (2) by setting ##H_H |0>=0## with ##H_H=\int \frac{\mathrm{d} k}{2 \pi 2\omega_k}\left(A(k) A^\dagger (k)+A^\dagger (k) A(k) \right)##

This Hamiltonian is derived by utelizing the Fourier transformation ##\tilde{\Phi}(k)## of ##\Phi(x)##, however, so I don't know how to work with the boundary conditions in this computation.
 
Emil_M said:
##H_H |0>=0## with ##H_H=\int \frac{\mathrm{d} k}{2 \pi 2\omega_k}\left(A(k) A^\dagger (k)+A^\dagger (k) A(k) \right)##

Again, since the set of modes is discrete, this integral is replaced by a sum.

From the boundary conditions (3), ##\phi \left( t,0 \right) = \phi \left( t,d \right) = 0##. What are the possible values ##\lambda##? What are the possible values ##\omega##?
 
George Jones said:
Again, since the set of modes is discrete, this integral is replaced by a sum.

From the boundary conditions (3), ##\phi \left( t,0 \right) = \phi \left( t,d \right) = 0##. What are the possible values ##\lambda##? What are the possible values ##\omega##?

Thank you for your answer!

I thought if the wave consists of discrete modes, the continuous spectrum should have corresponding delta functions in order to go from integration to summation? Otherwise the dimension of the expression would change, no? I was under the impression that the canonical commutation relations would provide those delta functions?
 
Emil_M said:
I thought if the wave consists of discrete modes, the continuous spectrum should have corresponding delta functions in order to go from integration to summation?

I had in mind starting with a discrete set, but let's try this.

Arguing heuristically,

George Jones said:
From the boundary conditions (3), ##\phi \left( t,0 \right) = \phi \left( t,d \right) = 0##. What are the possible values ##\lambda##?

And thus what are the possible values of ##k##?
 
George Jones said:
And thus what are the possible values of ##k##?

Thank you so much for your help!

##\lambda=\{ 2d, d, d/2, d/3,...\}## which means by ##\lambda=2\pi /k## that ## k= \{ \pi/d, 2 \pi/d, 4 \pi /d, 5 \pi/d,...\}##
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 59 ·
2
Replies
59
Views
12K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 26 ·
Replies
26
Views
4K