- #1
- 10
- 0
Homework Statement
Consider the PDE [itex]xu_x + y u_y = 4 u, -\infty < x < \infty, -\infty < y < \infty[/itex]. Find an explicit solution that satisfies [itex]u = 1[/itex] on the ellipse [itex]4x^2 + y^2 = 1[/itex].
Homework Equations
The Attempt at a Solution
The characteristic curves are
[itex]x(t,s) = f_1(s) e^t[/itex]
[itex]y(t,s) = f_2(s) e^t[/itex]
[itex]u(t,s) = f_3(s) e^{4t}[/itex].
The initial conditions are
[itex]x(0,s) = s[/itex]
[itex]y(0,s) = \pm \sqrt{1 - 4s^2}[/itex]
[itex]u(0,s) = 1[/itex].
Parametric representation of the integral surface is then
[itex]x(t,s) = s e^t[/itex]
[itex]y(t,s) = \pm \sqrt{1 - 4s^2} e^t[/itex]
[itex]u(t,s) = e^{4t}[/itex].
How do I invert these to get [itex]u(x,y)[/itex]?