Cauchy sequence in Q not converging to zero.

Click For Summary
A Cauchy sequence in the rationals that does not converge to zero must have an epsilon greater than zero such that for all natural numbers greater than a certain N, the sequence values are either consistently greater than epsilon or consistently less than negative epsilon. The discussion highlights the importance of the Cauchy property, as it ensures that the sequence remains bounded away from zero. The participants clarify the correct negation of the convergence definition and emphasize the need for an infinite subsequence that maintains this distance from zero. Ultimately, understanding the Cauchy condition is crucial for proving the sequence's behavior. The conversation concludes with a clearer grasp of the proof requirements.
arturo_026
Messages
18
Reaction score
0
I have the following exercise:

Let s_n be a cauchy sequence in Q(rationals) not converging to 0. Show that there exists an e(epsilon) >0 and a natural number N such that either for all n>N, s_n > e or for all n>N, -s_n >e.

I know that since Q is not complete, we cannot assume that there exists a point (say s) such that s_n coverges to it since this s could well be in the real numbers.

I am hessitant with the the answer I came up with since i didnt use the fact that s_n is cauchy. What i did is the following:

From the fact that s_n does not converge to zero, then we can deduce that: there's an e>0 and N such that for all n>N, d(s_n, 0) is not less than e. so this implies that d(s_n, 0) >= e. So absolute value of (s_n - 0) > e in implies that s_n>e or -s_n>e. Now i need to show that s_n=e is not possible, but as of right now i haven't been able to do so.

Any advice and guidence will be greatly appreciated.
Thank you very much.
 
Physics news on Phys.org
Here's why you need Cauchy. Define s_n to be 1 if n is even and 1/n if n is odd. I.e. {1,1,1/3,1,1/5,1,1/7,1...}. s_n does not converge to zero, but it doesn't avoid any neighborhood of zero either. And it's not Cauchy.
 
I see that makes sense. Thank you Dick
Now, as far as my semi-complete proof goes, is it correct? and how could I implement the fact that s_n is cauchy in the proof?
Thank you again
 
arturo_026 said:
I see that makes sense. Thank you Dick
Now, as far as my semi-complete proof goes, is it correct? and how could I implement the fact that s_n is cauchy in the proof?
Thank you again

Start by getting the correct statement that corresponds to "s_n does not converge to 0". Write down the definition of s_n converges to 0 and negate it. Carefully. You didn't get it right the first time.
 
Thank you for your patience Dick.

So I start with this for "s_n converges to zero":
For all ε>0, there exists a natural number N such that n≥N implies that abs. value of (s_n - 0) < ε.

Now I tried negating every part but it doesn't seem to be right.
What seems somewhat correct is that the negation will read:
There exists an ε>0, for all natural numbers N such that n≥N implies that abs. value of (s_n - 0) ≥ ε

If this is correct, will s_N=ε? so that way we take n=N out of the final statement.
 
Almost correct. Change it to this:
There exists an ε>0 such that for all natural numbers N THERE EXISTS an n≥N such that abs. value of (s_n - 0) ≥ ε

In other words, there is an infinite subsequence s_k of s_n that satisfies |s_k|> ε. That's makes sense, doesn't it?
 
Dick said:
Almost correct. Change it to this:
There exists an ε>0 such that for all natural numbers N THERE EXISTS an n≥N such that abs. value of (s_n - 0) ≥ ε

In other words, there is an infinite subsequence s_k of s_n that satisfies |s_k|> ε. That's makes sense, doesn't it?

ok, so now if I replace ≤ by < then I'm able to include all n greater then N and abs. value (s_n) thus becomes only > ε. And this is it?
 
arturo_026 said:
ok, so now if I replace ≤ by < then I'm able to include all n greater then N and abs. value (s_n) thus becomes only > ε. And this is it?

Well, no! You want to say that ALL of the points with n greater than some N are farther from 0 than some ε, so far you only have an infinite sequence of them. That's where being Cauchy comes in.
 
Yes, now it's clear.
Thank you so much Dick, I think I got it!
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
11
Views
2K
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K