I have the following exercise:(adsbygoogle = window.adsbygoogle || []).push({});

Let s_n be a cauchy sequence in Q(rationals) not converging to 0. Show that there exists an e(epsilon) >0 and a natural number N such that either for all n>N, s_n > e or for all n>N, -s_n >e.

I know that since Q is not complete, we cannot assume that there exists a point (say s) such that s_n coverges to it since this s could well be in the real numbers.

I am hessitant with the the answer I came up with since i didnt use the fact that s_n is cauchy. What i did is the following:

From the fact that s_n does not converge to zero, then we can deduce that: there's an e>0 and N such that for all n>N, d(s_n, 0) is not less than e. so this implies that d(s_n, 0) >= e. So absolute value of (s_n - 0) > e in implies that s_n>e or -s_n>e. Now i need to show that s_n=e is not possible, but as of right now i havent been able to do so.

Any advice and guidence will be greatly appreciated.

Thank you very much.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Cauchy sequence in Q not converging to zero.

**Physics Forums | Science Articles, Homework Help, Discussion**