CD: What Makes a Spacetime Geodesically Complete?

  • Thread starter Thread starter Manicwhale
  • Start date Start date
  • Tags Tags
    Geodesic Proofs
Manicwhale
Messages
10
Reaction score
0
I'm reading an article (http://arxiv.org/abs/gr-qc/0403075) which proves that a certain spacetime is geodesically complete. It does this by proving that the first derivatives fo all coordinates have finite bounds. My question is why this is enough.

Is it just a simple ODE result? We know that the geodesic equation locally has a solution given an initial "position" and "velocity", by the basic existence result in ODEs. Hence if we show that this "velocity" is bounded everywhere then then the geodesic can extend indefinitely, because the geodesic equation can be solved everywhere. Is this right?
 
Physics news on Phys.org
Manicwhale said:
Is it just a simple ODE result?

On p. 5, where they say this, they refer to their reference 5, which is a book on ODEs, so it sounds like they are claiming that it is a simple ODE result.

Manicwhale said:
We know that the geodesic equation locally has a solution given an initial "position" and "velocity", by the basic existence result in ODEs. Hence if we show that this "velocity" is bounded everywhere then then the geodesic can extend indefinitely, because the geodesic equation can be solved everywhere. Is this right?
This sounds convincing to me. The general impression I get is that the test they're applying is a very strict one, so it's fairly clear that if a spacetime passes the test, it's geodesically complete. On the other hand, I think there might be many spacetimes that were geodesically complete but would fail this test.

If you had a coordinate singularity, I think your spacetime could be geodesically complete but you wouldn't be able to prove it by this test.

If there is a non-coordinate singularity, but it can't be reached in a finite amount of time, then I believe that is generally considered to be a case where the spacetime is still geodesically complete. I don't know what their test would do in this case -- it might depend on the method they used to prove the limit on the bounds of the derivatives.

You can also get cases like the following. Suppose you take a Minkowski space, described in the usual coordinates, and restrict it to the subset of events with t<0. Then the space would be geodesically incomplete, because every geodesic would terminate at t=0. However, the space can be extended past t=0, so the incompleteness isn't due to a singularity.
 
Thanks! I think that all sounds right. I'm reassured now.
 
bcrowell said:
If you had a coordinate singularity, I think your spacetime could be geodesically complete but you wouldn't be able to prove it by this test.

No it couldn't! Every spacetime with a coordinate singularity is geodesically incomplete. This is definitely becase there are values of coordinates for which the geodesic equations have at least an infinite term. As an example of this, see http://en.wikipedia.org/wiki/Rindler_coordinates" .

AB
 
Last edited by a moderator:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top