Centripetal acceleration equation

AI Thread Summary
The centripetal acceleration equation, a = v^2/r, can seem non-intuitive, particularly regarding the relationship between speed and acceleration. It is important to note that "v" represents speed, not velocity, as velocity involves direction, which is constantly changing in circular motion. This change in direction at constant speed is what leads to acceleration, making the equation logical. Additionally, the radius affects the rate of change in direction: a longer radius results in slower changes and lower acceleration. Understanding these concepts clarifies the equation's validity and incorporates time through the speed measurement.
johndb
Messages
24
Reaction score
0
I find the equation for centripetal acceleration non-intuititive. V^2/r tells me velocity is multiplied by the velocity ( which at this stage is usually a very large number) then this is divided by the radius.. Leaves me with subdivisions that happen to equal the rate of acceleration..Dubious.. And why like in linear acceleration is there no recognition of initial and final velocities and even a dimension of time. Is anyone else discomforted by this and can anyone shed some light on this, thanks.
 
Physics news on Phys.org
The v in the equation is not velocity, it's speed. Even if this speed is constant, the velocity is constantly changing because the direction is constantly changing. It is this change in direction (in the case of constant speed) that constitutes the acceleration.

In that light, the situation is perfectly reasonable and intuitive. The faster you swing a weight on the end of a string, the more quickly it is changing direction, so the higher the acceleration. The longer the string, the slower the change in direction (at the same speed) and therefore the lower the acceleration

And time is in the equation, in v (as meters per second, for example).
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top