Centripetal Acceleration of Earth

AI Thread Summary
The discussion focuses on calculating the centripetal acceleration of an object on Earth's equator due to its rotation. Participants emphasize the need to determine the Earth's radius and the correct rotational velocity, clarifying that the provided velocity figure of 11.2 km/s is actually the escape velocity, not the rotational speed. The correct approach involves using the formula for centripetal acceleration, a = v²/r, with the appropriate values for velocity and radius. One participant struggles with arithmetic errors leading to an incorrect acceleration value. Ultimately, understanding the distinction between escape velocity and rotational speed is crucial for solving the problem accurately.
shell4987
Messages
43
Reaction score
0

Homework Statement


(a) What is the magnitude of the centripetal acceleration of an object on Earth's equator owing to the rotation of Earth? (b) What would the period of rotation of Earth (in minutes) have to be for objects on the equator to have a centripetal acceleration with a magnitude of 9.80 m/s2?


Homework Equations


a=v squared/r and T=(2(pi)(r))/v


The Attempt at a Solution


How do I find out the radius of the Earth? Let alone the velocity of the Earth? I think if I knew those two that maybe I could solve this problem.
 
Physics news on Phys.org
shell4987 said:
How do I find out the radius of the Earth?
Look it up!

Let alone the velocity of the Earth?
Once you have the radius, you should be able to figure out the speed of a point on the equator.
 
shell4987 said:

Homework Statement


(a) What is the magnitude of the centripetal acceleration of an object on Earth's equator owing to the rotation of Earth? (b) What would the period of rotation of Earth (in minutes) have to be for objects on the equator to have a centripetal acceleration with a magnitude of 9.80 m/s2?


Homework Equations


a=v squared/r and T=(2(pi)(r))/v


The Attempt at a Solution


How do I find out the radius of the Earth? Let alone the velocity of the Earth? I think if I knew those two that maybe I could solve this problem.

They assume that you will look up the radius of the Earth in your book. You have to calculate the speed using the fact that you know the period of rotation!
 
Okay, I looked up all of my information in the book and got the radius to be 6.37e6 and the velocity to be 11.2km/s, I attempted part (a) and got the answer to be 2.0e13m/s squared and that came out to be wrong, what did i do wrong for that, i used the a=v squared/r formula with 11200 m/s as velocity and 6.37e6m as the radius? Am I doing something wrong here?

And for part (b) I solved it and got it correct. Thank you.
 
shell4987 said:
Okay, I looked up all of my information in the book and got the radius to be 6.37e6 and the velocity to be 11.2km/s,
Show how you calculated the velocity. Even if you assume that speed, how did you calculate an acceleration of 2.0e13!
 
Doc Al said:
Show how you calculated the velocity. Even if you assume that speed, how did you calculate an acceleration of 2.0e13!

I converted 11.2km/s (the velocity of the Earth) into meters by multiplying it by 1000, therefore getting 11200 m/s, then i put that into the a= v squared/r formula and used r as 6.37e6m... ahh i don't know what I'm doing wrong!
 
shell4987 said:
I converted 11.2km/s (the velocity of the Earth)
You want the rotational speed of the Earth's surface. Figure it out using period (one day) and the Earth's radius.

therefore getting 11200 m/s, then i put that into the a= v squared/r formula and used r as 6.37e6m
Even using your numbers you won't get anywhere near the answer you got. (Check your arithmetic!)
 
shell4987 said:
Okay, I looked up all of my information in the book and got the radius to be 6.37e6 and the velocity to be 11.2km/s,

Just for your future reference, take a look at the source (a table in your text?) where you found this velocity figure. This is the *escape* velocity of the Earth, which won't be of help to you in the problem.
 
Back
Top