\renewcommand{\vec}[1]{\boldsymbol #1}
The acceleration vector comes from performing vector kinematics. Let's consider a case of motion of a point mass in the plane.
Consider a rotating reference frame b^+ relative to an inertial frame n^+, where the ##\hat{\vec{b}}_1## unit vector
always points toward the point mass.
We can write a position vector of a point mass in the ##b^+## frame as:<br />
\vec{p}=r\hat{\vec{b}}_1<br />where the ##\hat{\vec{b}}_i\text{'s}## are the unit vectors defining ##b^+##. In the plane, we can write the angular velocity of the frame ##b^+## relative to the ##n^+## frame as \vec{\omega}_{b/n} = \dot{\theta}\hat{\vec{b}}_3.
There is a neat result that we call the kinematic transport theorem. Simply put, it says that the derivative of a vector in one frame ##b^+## as
viewed by an observer in another frame, say ##a^+##, is made up of two parts: 1) the change of the vector in the ##b^+## frame as viewed by an observer in the ##b^+## frame, and 2) the angular velocity of ##b^+## relative to ##a^+##. Mathematically,\frac{{}^a\text{d}\vec{r}}{\text{d}{t}} = \frac{{}^b\text{d}\vec{r}}{\text{d}{t}} + \vec{\omega}_{b/a} \times \vec{r}
We can apply this to our position vector to get an inertial velocity vector:<br />
\begin{align*}<br />
\frac{{}^n\text{d}\vec{p}}{\text{d}{t}} &= \frac{{}^b\text{d}\vec{p}}{\text{d}{t}} + \vec{\omega}_{b/n}\times \vec{p}\\<br />
&= \dot{r}\hat{\vec{b}}_1 + \dot{\theta}\hat{\vec{b}}_3\times r\hat{\vec{b}}_1\\ \vec{v} = \frac{{}^n\text{d}\vec{p}}{\text{d}{t}} &= \dot{r}\hat{\vec{b}}_1 + r\dot{\theta}\hat{\vec{b}}_2\end{align*}
Apply the KTT once more to obtain the inertial acceleration:<br />
\begin{align*}<br />
\vec{a} = \frac{{}^n\text{d}\vec{v}}{\text{d}{t}} &= \frac{{}^b\text{d}\vec{v}}{\text{d}{t}} + \vec{\omega}_{b/n}\times \vec{v}\\<br />
&= \ddot{r}\hat{\vec{b}}_1 + \left(\dot{r}\dot{\theta} + r\ddot{\theta}\right)\hat{\vec{b}}_2 + \dot{\theta}\hat{\vec{b}}_3 \times \left(\dot{r}\hat{\vec{b}}_1 + r\dot{\theta}\hat{\vec{b}}_2\right)\\<br />
&= \ddot{r}\hat{\vec{b}}_1 + \left(\dot{r}\dot{\theta} + r\ddot{\theta}\right)\hat{\vec{b}}_2 + \dot{r}\dot{\theta}\hat{\vec{b}}_2 - r\dot{\theta}^2\hat{\vec{b}}_1 \\<br />
\vec{a} &= \left(\ddot{r} - r\dot{\theta}^2\right)\hat{\vec{b}}_1 + \left(2\dot{r}\dot{\theta} + r\ddot{\theta}\right)\hat{\vec{b}}_2<br />
\end{align*}
From this last result, we have the centripetal acceleration given by ##-r\dot{\theta}^2\hat{\vec{b}}_1## (this result may look more familiar if we define ##\omega \equiv \dot{\theta}## and write ##-r\dot{\theta}^2\hat{\vec{b}}_1 = - r\omega^2\hat{\vec{b}}_1 = -v^2/r\hat{\vec{b}}_1##). But we know that ##\hat{\vec{b}}_1## points outwards, so the centripetal acceleration must point toward the center.
You can easily extend this result to 3-D.