Centripetal force problem involving a washing machine

AI Thread Summary
The discussion revolves around a physics problem involving a washing machine's drum and the conditions under which a wet sock falls due to centripetal force. The initial approach incorrectly combines vertical and horizontal forces, leading to confusion about the forces acting on the sock. Key corrections emphasize the need to separate the equations for vertical and horizontal forces, specifically identifying the normal force and static friction. Participants suggest drawing a free body diagram to clarify the forces and recommend writing two distinct equations for each direction to properly analyze the problem. The conversation highlights the importance of understanding the dynamics of forces in rotational motion.
Caw
Messages
3
Reaction score
0
Summary:: Just want to know if I'm on the right track with this question.

Hi, so this is what I have for my assignment:
A washing machines drum is rotating rapidly about a vertical axis (a so-called toploader). A wet sock is stuck on the inside, halfway up the drum, and the drum begins to slow its rotation. How many rotations per second is the drum making when the sock falls to the bottom of the drum? The coefficient of static friction between the sock and the drum is 0.21, and the drum radius is 0.32 m.

And after deriving some formula, I got these statements:
- Sock falls when Fc<Fg
=> Fg=mac+Ffr
where Fc is centripetal force
m is mass
ac is centripetal acceleration
Ffr is force friction

- From Fg=mac+Ffr, I got: mg=mac+umg
then: mg=(mv^2)/r + umg
finally: v=squrt[(g-ug)r]

- Then I used the velocity to find rotation/sec

I just want to know if I'm on the right track. And if I'm not where should I start because I have no other clue. Thank you in advance!
 
Physics news on Phys.org
Hi Caw and welcome to PF.
:welcome:

Caw said:
mg=(mv^2)/r + umg
There is a problem with this equation. The weight mg and the force of friction μmg are vertical but mv2/r is horizontal because it points towards the axis of rotation. You cannot add vertical and horizontal forces like this. Hint: The maximum force of static friction is not always ##f_s^{max}=\mu_s mg## but it is always ##f_s^{max}=\mu_s N##. What is the normal force ##N## in this case? Draw a free body diagram of the sock.
 
  • Informative
Likes Caw
kuruman said:
Hi Caw and welcome to PF.
:welcome:There is a problem with this equation. The weight mg and the force of friction μmg are vertical but mv2/r is horizontal because it points towards the axis of rotation. You cannot add vertical and horizontal forces like this. Hint: The maximum force of static friction is not always ##f_s^{max}=\mu_s mg## but it is always ##f_s^{max}=\mu_s N##. What is the normal force ##N## in this case? Draw a free body diagram of the sock.
Oh, so N in this case would be equal to the centrifugal force since that's the only one available horizontally, right? Also should the mg on the other side be changed too (I don't really know because isn't it the only force that can pull the sock down? Thank you so much for pointing out that mistake and sorry for the late respond.
 
Last edited:
You need to write two separate F = ma equations, one for the horizontal direction and one for the vertical direction. You are correct in saying that the centripetal force and the normal force are horizontal. Note that the weight and force of friction are vertical. Please post the equations.
 
  • Like
Likes Caw
F vertical is equal to mg and F horizontal is equal to (umv^2)/r.
So, the final equation is mg=(umv^2)/r?
 
Caw said:
F vertical is equal to mg and F horizontal is equal to (umv^2)/r.
So, the final equation is mg=(umv^2)/r?
You cannot say that a vertical force is equal to a horizontall force. To clarify in your mind how this works, please answer the following questions
1. What is the sum of all the forces in the vertical direction?
2. What is the acceleration in the vertical direction at the moment the sock is just about ready to slip but has not started moving yet?
3. What is the sum of all the forces in the horizontal direction?
4. What is the acceleration in the horizontal direction at the moment the sock is just about ready to slip but has not started moving yet?

You get the two equations I mentioned by setting your answer to 1 equal to mass times your answer in 2 and your answer in 3 equal to mass times your answer in 4. That's how it's supposed to work and don't worry that the mass of the sock is not given.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top