Change in heat and internal energy

AI Thread Summary
The discussion centers on the calculation of heat transfer (ΔQ) and internal energy change (ΔU) in a thermodynamic cycle involving an ideal gas. It raises the question of whether to use specific heat at constant pressure (Cp) or constant volume (Cv) due to changes in both pressure and volume. The internal energy change is determined by ΔU = mCv(T2-T3), emphasizing that for an ideal gas, internal energy depends solely on temperature. The area under the curve in a pressure-volume diagram represents the work done by the gas, which can be calculated using the ideal gas law (PV = nRT). The importance of adhering to sign conventions in calculations is also highlighted, ensuring accurate results.
Ashshahril
Messages
4
Reaction score
1
Homework Statement
What is the change in heat and internal energy in this PV diagram (attached link) from T2 to T3 (T represents temperature)?
Relevant Equations
ΔQ=mC(T3-T1)
Δu=ΔQ + Δw
ΔQ=mC(T3-T1)

But, will this C be Cp or Cv. Both pressure and volume changes. So, neither of them can be.

Feeling so confused
 

Attachments

  • Screenshot_20210622-213430_Chrome.jpg
    Screenshot_20210622-213430_Chrome.jpg
    34.3 KB · Views: 158
Physics news on Phys.org
Calculate the work from 2-3 which will be the area under the line from 2-3( trapezium area) and you know the change in internal energy= Cv(T2-T3) and u will get ∆Q
 
Note this is a full cycle. You start at point 1 and finish at point 1. So the system's final state is the same as its initial state. What can you say about the overall change in the system's internal energy, ΔU?

The area gives you the work done by the gas. ΔW:
https://www.ux1.eiu.edu/~cfadd/1150/14Thermo/Images/Diag10.gif
If you are dealing with n moles of an ideal gas you can use PV = nRT to get the value of V at each vertex and then derive a formula for ΔW in terms of the P's, T's, n and R.

Then you can find ΔQ.

Make sure the signs (+ or -) of your answers match the sign-convention you are using.

Edit: poor wording corrected.
 
Last edited:
For an ideal gas, internal energy is a function only of temperature. By definition, Cv is given by $$mC_v=\left(\frac{\partial U}{\partial T}\right)_V$$But, since U is dependent only on T for an ideal gas, $$\Delta U=mC_v\Delta T$$
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top