Change in heat and internal energy

Click For Summary
The discussion centers on the calculation of heat transfer (ΔQ) and internal energy change (ΔU) in a thermodynamic cycle involving an ideal gas. It raises the question of whether to use specific heat at constant pressure (Cp) or constant volume (Cv) due to changes in both pressure and volume. The internal energy change is determined by ΔU = mCv(T2-T3), emphasizing that for an ideal gas, internal energy depends solely on temperature. The area under the curve in a pressure-volume diagram represents the work done by the gas, which can be calculated using the ideal gas law (PV = nRT). The importance of adhering to sign conventions in calculations is also highlighted, ensuring accurate results.
Ashshahril
Messages
4
Reaction score
1
Homework Statement
What is the change in heat and internal energy in this PV diagram (attached link) from T2 to T3 (T represents temperature)?
Relevant Equations
ΔQ=mC(T3-T1)
Δu=ΔQ + Δw
ΔQ=mC(T3-T1)

But, will this C be Cp or Cv. Both pressure and volume changes. So, neither of them can be.

Feeling so confused
 

Attachments

  • Screenshot_20210622-213430_Chrome.jpg
    Screenshot_20210622-213430_Chrome.jpg
    34.3 KB · Views: 161
Physics news on Phys.org
Calculate the work from 2-3 which will be the area under the line from 2-3( trapezium area) and you know the change in internal energy= Cv(T2-T3) and u will get ∆Q
 
Note this is a full cycle. You start at point 1 and finish at point 1. So the system's final state is the same as its initial state. What can you say about the overall change in the system's internal energy, ΔU?

The area gives you the work done by the gas. ΔW:
https://www.ux1.eiu.edu/~cfadd/1150/14Thermo/Images/Diag10.gif
If you are dealing with n moles of an ideal gas you can use PV = nRT to get the value of V at each vertex and then derive a formula for ΔW in terms of the P's, T's, n and R.

Then you can find ΔQ.

Make sure the signs (+ or -) of your answers match the sign-convention you are using.

Edit: poor wording corrected.
 
Last edited:
For an ideal gas, internal energy is a function only of temperature. By definition, Cv is given by $$mC_v=\left(\frac{\partial U}{\partial T}\right)_V$$But, since U is dependent only on T for an ideal gas, $$\Delta U=mC_v\Delta T$$
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 2 ·
Replies
2
Views
848
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K