- #1

agnimusayoti

- 240

- 23

- Homework Statement
- Evaluate integral

$$I=\int_{0}^{\infty} \int_{0}^{\infty} \frac {x^2+y^2}{1+(x^2-y^2)^2} e^{-2xy} dx dy$$

- Relevant Equations
- ##J=\frac {\partial {(x,y)}}{\partial {(u,v)}}##

From the equations, I can find Jacobians:

$$J = \frac {1}{4(x^2 + y^2)} $$

But, I confuse with the limit of integration. How can I change it to u,v variables? Thanks...

$$J = \frac {1}{4(x^2 + y^2)} $$

But, I confuse with the limit of integration. How can I change it to u,v variables? Thanks...