- #1
agnimusayoti
- 240
- 23
- Homework Statement
- Evaluate integral
$$I=\int_{0}^{\infty} \int_{0}^{\infty} \frac {x^2+y^2}{1+(x^2-y^2)^2} e^{-2xy} dx dy$$
- Relevant Equations
- ##J=\frac {\partial {(x,y)}}{\partial {(u,v)}}##
From the equations, I can find Jacobians:
$$J = \frac {1}{4(x^2 + y^2)} $$
But, I confuse with the limit of integration. How can I change it to u,v variables? Thanks...
$$J = \frac {1}{4(x^2 + y^2)} $$
But, I confuse with the limit of integration. How can I change it to u,v variables? Thanks...