Hi, I want to do a similar statistics analysis as in the next paper:(adsbygoogle = window.adsbygoogle || []).push({});

http://www.phy.bris.ac.uk/people/Berry_mv/the_papers/Berry340.pdf

But the boundary conditions are on a two dimensioanl torus, so a solution will be of the form

[tex]u(R)=\sum_{j=1}^{\infty} \sum_{m,n=0}^{\infty} (A_{mn} sin(mXcos(\theta_j)+nYsin(\theta_j)+\phi_j) + B_{mn} cos(mXcos(\theta_j)+nYsin(\theta_j)+\phi_j)[/tex] (have I got it right?!) the problem arises when I impose on it a Dirchlet boundary condition (for example), cause I need f to satisfy: [tex]u(x,0)=u(x,2\pi)=0[/tex] and [tex] u(0,y)=u(2\pi,y)=0[/tex]

Which doesn't look like something I can solve easily, can I?

Any help?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Chaotic quantum billiards on a torus.

**Physics Forums | Science Articles, Homework Help, Discussion**