Christofell Symbols: Derivation in Schutz & Wald

  • Thread starter Thread starter HomogenousCow
  • Start date Start date
  • Tags Tags
    Derivation Symbols
HomogenousCow
Messages
736
Reaction score
213
In Schutz, the christofell symbols are dervied from applying the product rule to a vector in a curvillinear basis.
In Wald, the christofell symbols are dervied by making an ansatz of the form a covariant derivative must take and then imposing conditions on it like the metric covariant derivative being zero.

What I find odd about this is that the derivation in Wald implies that one could construct other theories of general relativity by imposing different conditions like a non-zero torsion or a non-zero metric covariant derivative, while the derivation in Schutz leaves no room for a different theory.
Why is this so?
 
Physics news on Phys.org
Well Wald's definition assumes ##\nabla_{[a}\nabla_{b]}f = 0## so you can't use the affine connections Wald defines if you want a theory of gravity with torsion. Regardless, in general we can easily have affine connections with torsion that are still metric compatible (see Wald exercise 3.1) and define a theory of gravity using this connection such as Einstein-Cartan theory. Schutz and Wald are simply excluding these cases because they are gravitational theories that are distinct from GR whereas the contents of the books only deal with GR, that's all there is to it.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top