Circle or polygon for charged particle in magnetic field....

Sven Andersson
Messages
38
Reaction score
0
...perpendicular to its path? OK; let's say you have any charged particle moving perpendicular to a magnetic field; does it describe a gigantic polygon or a perfect circle? I think it's a polygon; the particle absorbs a "quantum of force" from the magnetic field, so to speak, and changes direction. It then travels some distance in a straight line and then the process is repeated. Of course the length of a side is incredibly small and macroscopically it will look like a circle.

S.A.
 
Physics news on Phys.org
Classically, it is a circle.
Quantum mechanically, a unique trajectory for the particle cannot even be defined.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top