the.ultimate.maveric
- 3
- 0
Problem :
A cube is inscribed in a sphere of diameter 1. What is the surface area of the cube?
Solution (attempted!) :
Let there be a circle of radius 0.5 with centre at (0, 0.5).
The equation of this circle is therefore:
x^2 + (y-0.5)^\frac{1}{2} = 0.5^2
x = (y-y^2)^\frac{1}{2}
Integrate x with respect to y gives the area to the left of the curve.
So :
Let x = (y-y^2)^\frac{3}{2}
Let u = (y-y^2)<br /> <br /> \Rightarrow x = u^\frac{3}{2}
And
\frac{\delta x}{\delta y} = \frac{\delta x}{\delta u} \cdot \frac{\delta u}{\delta y}
\frac{\delta x}{\delta u} = \frac{3}{2} u^\frac{1}{2} = \frac{3}{2} (y-y^2)^\frac{1}{2}
\frac{\delta u}{\delta y} = 1 - 2y
\Rightarrow \frac{\delta x}{\delta y} = (\frac{3}{2} (y-y^2)^\frac{1}{2}) \cdot (1 - 2y)
\Rightarrow \frac{\delta x}{\delta y} = (y-y^2)^\frac{1}{2} \cdot (\frac{3}{2} - 3y)
So :
\int_{a}^{b} (y-y^2)^\frac{1}{2} dy = \frac{(y-y^2)^\frac{3}{2}}{(\frac{3}{2} - 3y)} + C
Let B and A be defined by this drawing!
B has co-ordinates (0.5,0.5)
To find A co-ordinates. Consider the diagonal line. It is a diameter and thus has length 1.
The edge of the square therefore has length \sqrt{\frac{1}{2}}
Therefore A has y co-ordinate 0.5 - \sqrt{\frac{1}{2}}
\Rightarrow \int_{0.5 - \sqrt{\frac{1}{2}}}^{\frac{1}{2}} (y-y^2)^\frac{1}{2} dy = \left[\frac{(y-y^2)^\frac{3}{2}}{(\frac{3}{2} - 3y)}\right]_{0.5 - \sqrt{\frac{1}{2}}}^{\frac{1}{2}}} = I
\Rightarrow 0.5^2\pi - 4(I - (\frac{1}{2})^2) = Surface area of 1 face
Then times by 6 to get SA of cube
Is this correct?
A cube is inscribed in a sphere of diameter 1. What is the surface area of the cube?
Solution (attempted!) :
Let there be a circle of radius 0.5 with centre at (0, 0.5).
The equation of this circle is therefore:
x^2 + (y-0.5)^\frac{1}{2} = 0.5^2
x = (y-y^2)^\frac{1}{2}
Integrate x with respect to y gives the area to the left of the curve.
So :
Let x = (y-y^2)^\frac{3}{2}
Let u = (y-y^2)<br /> <br /> \Rightarrow x = u^\frac{3}{2}
And
\frac{\delta x}{\delta y} = \frac{\delta x}{\delta u} \cdot \frac{\delta u}{\delta y}
\frac{\delta x}{\delta u} = \frac{3}{2} u^\frac{1}{2} = \frac{3}{2} (y-y^2)^\frac{1}{2}
\frac{\delta u}{\delta y} = 1 - 2y
\Rightarrow \frac{\delta x}{\delta y} = (\frac{3}{2} (y-y^2)^\frac{1}{2}) \cdot (1 - 2y)
\Rightarrow \frac{\delta x}{\delta y} = (y-y^2)^\frac{1}{2} \cdot (\frac{3}{2} - 3y)
So :
\int_{a}^{b} (y-y^2)^\frac{1}{2} dy = \frac{(y-y^2)^\frac{3}{2}}{(\frac{3}{2} - 3y)} + C
Let B and A be defined by this drawing!
B has co-ordinates (0.5,0.5)
To find A co-ordinates. Consider the diagonal line. It is a diameter and thus has length 1.
The edge of the square therefore has length \sqrt{\frac{1}{2}}
Therefore A has y co-ordinate 0.5 - \sqrt{\frac{1}{2}}
\Rightarrow \int_{0.5 - \sqrt{\frac{1}{2}}}^{\frac{1}{2}} (y-y^2)^\frac{1}{2} dy = \left[\frac{(y-y^2)^\frac{3}{2}}{(\frac{3}{2} - 3y)}\right]_{0.5 - \sqrt{\frac{1}{2}}}^{\frac{1}{2}}} = I
\Rightarrow 0.5^2\pi - 4(I - (\frac{1}{2})^2) = Surface area of 1 face
Then times by 6 to get SA of cube
Is this correct?
Last edited: