Circular motion (approximation of centripetal acc.)

AI Thread Summary
A body moving in a circle with constant velocity experiences an average acceleration that can be approximated as (v√2)/(T/4) over a quarter of the circumference. This approximation is due to the average acceleration being calculated over a time interval where the direction of the velocity vector changes significantly. Instantaneous acceleration varies more in larger time intervals, making the approximation less accurate. A smaller time interval yields a closer approximation to the true centripetal acceleration because the direction of acceleration changes less. The discussion concludes with a reference to how centripetal acceleration can be expressed as (ω^2)*r or (v^2)/r.
V0ODO0CH1LD
Messages
278
Reaction score
0
Say I have a body moving in a circle of radius r with a constant velocity v.

The time it takes the body to go around the circumference once is:

T = 2πr/v

Then the time it takes the body to go around a fourth of the circumference is T/4.

Now, imagine a diagram where when the body is at the leftmost portion of the circumference its velocity vector is pointing straight up, and when it is at the upmost portion of the circumference its velocity vector points entirely to the right. That is the body traveling over a fourth of the circumference.

Now, the magnitude of the acceleration vector required to make the body behave that way over a period of T/4 is (v√2)/(T/4). And (v√2)/(T/4) is an approximation of the centripetal acceleration for this case.

My question is: why is that an approximation? Why if I do the same thing over a smaller change in time I get closer to the centripetal acceleration? A circle is symmetric and the velocity is constant, right?
 
Physics news on Phys.org
V0ODO0CH1LD said:
Say I have a body moving in a circle of radius r with a constant velocity v.

The time it takes the body to go around the circumference once is:

T = 2πr/v

Then the time it takes the body to go around a fourth of the circumference is T/4.

Now, imagine a diagram where when the body is at the leftmost portion of the circumference its velocity vector is pointing straight up, and when it is at the upmost portion of the circumference its velocity vector points entirely to the right. That is the body traveling over a fourth of the circumference.
Agreed, so far.
Now, the magnitude of the acceleration vector ...
Not quite. This is the magnitude of the average acceleration, where the average acceleration is defined as
\vec{a_{avg}}=\frac{\Delta \vec{v}}{\Delta t}

... required to make the body behave that way over a period of T/4 is (v√2)/(T/4). And (v√2)/(T/4) is an approximation of the centripetal acceleration for this case.

My question is: why is that an approximation?
Because it is an average, and the actual instantaneous acceleration changes substantially (because it changes direction) during the time interval.
Why if I do the same thing over a smaller change in time I get closer to the centripetal acceleration?
Because, for a small time interval, the acceleration does not change direction very much, and is more closely approximated by its average over that time interval.
A circle is symmetric and the velocity is constant, right?
No, velocity is a vector and is not constant if its direction changes. Speed is constant, however.
 
That helped a lot! Thanks!

One for additional question though. How does all of that get summarised into (ω^2)*r or (v^2)/r?
 
You're welcome :smile:

This explains things pretty well:

http://scienceblogs.com/dotphysics/2009/07/basics-centripetal-acceleration/
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top