Circular Motion Without Gravity- Calc Based

AI Thread Summary
The discussion focuses on solving a physics problem involving a bead moving on a circular ring without gravity, emphasizing the application of Newton's laws and the effects of friction. Participants analyze the differential equation governing the bead's speed, noting that the frictional force equates to the tangential force. A key point of confusion arises regarding the integration constants, with clarification that only one constant is needed when integrating the equation. The correct form of the solution for speed is confirmed to align with the expected format, and participants express appreciation for the resolution of their misunderstanding. The thread highlights the importance of correctly interpreting integration constants in differential equations.
bollocks748
Messages
10
Reaction score
0
Circular Motion Without Gravity- Calc Based URGENT!

Homework Statement



Consider a bead of mass m that is free to move around a horizontal, circular ring of wire (the wire passes through a hole in the bead). You may neglect gravity in this problem (assume the experiment is being done in space, far away from anything else). The radius of the ring of wire is r. The bead is given an initial speed v_0 and it slides with a coefficient of friction mu_k. In the subsequent steps we will investigate the motion at later times. You should begin by drawing a free-body diagram at some instant of time. Note that there will be a radial acceleration, a_R, and a tangential acceleration, a_T, in this problem.

1.1 Write Newton's 2nd law for the radial and tangential directions.

1.2 Combine the above equations to write a differential equation for dv/dt, where v is the speed at time t.

1.3 Solve the above differential equation to determine v(t). The solution has the form v = c1/(1+c2*t) - find c1 and c2. Hint: if v_0 = 3 m/s, mu_k = 0.1, r = 10 cm, and t = 3 s, v(3) = 0.3 m/s.

We will continue our analysis of Problem 1 with the bead.

2.1 Given your solution for v(t), calculate the radial and tangential components of the acceleration, a_R(t) and a_T(t), respectively. From these calculate the total acceleration a_tot(t).

2.2 Given your solution for v(t), write the differential equation involving ds/dt, where s is the position of the bead around the circumference of the ring. Solve this equation for s(t).

2.3 Graph s(t), v(t), a_R(t), and a_T(t) for v_0 = 3 m/s, mu_k = 0.1, r = 10 cm and let t vary from 0 to 10 s.

2.4 What is the speed, v_1, of the bead after 1 revolution of the ring (using the parameter values given in part 2.3)? What is the speed v_2 after 2 revolutions of the ring? (On your own you may wish to calculate these two speeds for the same bead with the same parameters, except moving along a straight wire.)



The Attempt at a Solution



Okay, there's a thread on here that answers part of the first half, which I understood. Since there's no gravity, the frictional force is mv^2/r * mu_k, and that is equal to the tangential force, dv/dt. The masses cancel out, and that's the acceleration formula.

I set the differential equation as this:

mu_k * v^2/r = dv/dt

dt* mu_k/r = dv/ v^2

After I integrate that...

(mu_k)(t)/r + C1 = (-1/v) + C2

The solution is supposed to be in the form c1/(1+c2*t), which I can't comprehend being possible. So I tried to solve it using the equation above.

Using these initial conditions:
v_0 = 3 m/s, mu_k = 0.1, r = 10 cm, and t = 3 s, v(3) = 0.3 m/s.

I found C1-C2 to be -6.333. And solving for v(t), I found

v(t)= -1/ ((mu_k)t/r-6.333)

I don't feel like that's correct, and then using that formula to find the acceleration components is a nightmare.

If anyone can find where I went wrong, it would be much appreciated!
 
Last edited:
Physics news on Phys.org
Nothing...? :-(. I probably should have posted this earlier than the day before it's due.
 


bollocks748 said:

The Attempt at a Solution



Okay, there's a thread on here that answers part of the first half, which I understood. Since there's no gravity, the frictional force is mv^2/r * mu_k, and that is equal to the tangential force, dv/dt. The masses cancel out, and that's the acceleration formula.

I set the differential equation as this:

mu_k * v^2/r = dv/dt

dt* mu_k/r = dv/ v^2

After I integrate that...

(mu_k)(t)/r + C1 = (-1/v) + C2


Let's start from here.
You don't need two constants when you integrate. C1 and C2 in the problem are not two integration constants. Maybe this thing is confusing you.
The solution is
(mu_k)(t)/r = (-1/v) + C

Find C from the initial condition (v=vo at t=0)
Then solve the equation for v.
You'll find something that look exactly like they said. You just have to identify the constants.

I hope it helps. If not, let me know.
 
Yes, that fixed everything for me. I had thought that my professor wanted me to integrate both sides and leave the constants separate, but it was just coincidental that they were defined as c1 and c2. Thanks a lot!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top