MHB Circumcircles Find a formula relating R,R_1,R_2.

  • Thread starter Thread starter mrtwhs
  • Start date Start date
  • Tags Tags
    Formula
mrtwhs
Messages
47
Reaction score
0
Let $$\triangle ABC$$ be a right triangle with right angle at $$C$$. Suppose this right triangle has legs $$BC=a$$, $$AC=b$$, hypotenuse $$AB=C$$, and circumradius $$R$$. Two copies of this triangle can be joined to form an isosceles triangle in two ways. With $$a$$ as a common side, you can form an isosceles triangle with sides $$c,c,2b$$ and circumradius $$R_1$$. With $$b$$ as a common side, you can form an isosceles triangle with sides $$c,c,2a$$ and circumradius $$R_2$$. Find a formula relating $$R,R_1,R_2$$.
 
Mathematics news on Phys.org
My attempt:

For the first circle, we clearly have
$$R=\frac c2$$
as the circumcentre is the midpoint of the hypotenuse $\mathrm{AB}$.

For the second circle, let $\mathrm D$ be the point on $\mathrm{BC}$ extended so that $\angle\,\mathrm{DAB}$ is a right angle. Then $\triangle\mathrm{DCA}$ is similar to $\triangle\mathrm{ACB}$ and so $|\mathrm{DC}|=\dfrac{b^2}a$. The circumcentre is the midpoint of $\mathrm{DB}$ and so
$$R_1=\frac12\left(\frac{b^2}a+a\right)=\frac{c^2}{2a}.$$

By symmetry,
$$R_2=\frac{c^2}{2b}.$$

Hence:
$$c^2=a^2+b^2=\frac{c^4}{4R_1^2}+\frac{c^4}{4R_2^2}$$
$\implies\ \dfrac1{c^2}=\dfrac1{4R_1^2}+\dfrac1{4R_2^2}$

$\implies\ \boxed{\dfrac1{R^2}\ =\ \dfrac1{R_1^2}+\dfrac1{R_2^2}}$.
 
Last edited:
Olinguito said:

$\boxed{\dfrac1{R^2}\ =\ \dfrac1{R_1^2}+\dfrac1{R_2^2}}$.


Nice! Pretty much the same way I solved it.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top