MHB Circumcircles Find a formula relating R,R_1,R_2.

  • Thread starter Thread starter mrtwhs
  • Start date Start date
  • Tags Tags
    Formula
Click For Summary
In the discussion, a right triangle ABC with legs BC = a, AC = b, and hypotenuse AB = c is analyzed to derive a relationship between its circumradius R and the circumradii R1 and R2 of two isosceles triangles formed by joining two copies of triangle ABC. The isosceles triangle formed with a as the common side has sides c, c, and 2b, leading to circumradius R1. Conversely, the isosceles triangle formed with b as the common side has sides c, c, and 2a, resulting in circumradius R2. The participants are focused on finding a formula that connects R, R1, and R2 based on these configurations. The discussion emphasizes geometric relationships and circumradius calculations in right triangles.
mrtwhs
Messages
47
Reaction score
0
Let $$\triangle ABC$$ be a right triangle with right angle at $$C$$. Suppose this right triangle has legs $$BC=a$$, $$AC=b$$, hypotenuse $$AB=C$$, and circumradius $$R$$. Two copies of this triangle can be joined to form an isosceles triangle in two ways. With $$a$$ as a common side, you can form an isosceles triangle with sides $$c,c,2b$$ and circumradius $$R_1$$. With $$b$$ as a common side, you can form an isosceles triangle with sides $$c,c,2a$$ and circumradius $$R_2$$. Find a formula relating $$R,R_1,R_2$$.
 
Mathematics news on Phys.org
My attempt:

For the first circle, we clearly have
$$R=\frac c2$$
as the circumcentre is the midpoint of the hypotenuse $\mathrm{AB}$.

For the second circle, let $\mathrm D$ be the point on $\mathrm{BC}$ extended so that $\angle\,\mathrm{DAB}$ is a right angle. Then $\triangle\mathrm{DCA}$ is similar to $\triangle\mathrm{ACB}$ and so $|\mathrm{DC}|=\dfrac{b^2}a$. The circumcentre is the midpoint of $\mathrm{DB}$ and so
$$R_1=\frac12\left(\frac{b^2}a+a\right)=\frac{c^2}{2a}.$$

By symmetry,
$$R_2=\frac{c^2}{2b}.$$

Hence:
$$c^2=a^2+b^2=\frac{c^4}{4R_1^2}+\frac{c^4}{4R_2^2}$$
$\implies\ \dfrac1{c^2}=\dfrac1{4R_1^2}+\dfrac1{4R_2^2}$

$\implies\ \boxed{\dfrac1{R^2}\ =\ \dfrac1{R_1^2}+\dfrac1{R_2^2}}$.
 
Last edited:
Olinguito said:

$\boxed{\dfrac1{R^2}\ =\ \dfrac1{R_1^2}+\dfrac1{R_2^2}}$.


Nice! Pretty much the same way I solved it.
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K