Why Does Mathematica Give a Different Result for Spherical Harmonics?

Dustinsfl
Messages
2,217
Reaction score
5
$$
Y_{\ell}^m = \sqrt{\frac{(2\ell + 1)(\ell - m)!}{4\pi(\ell + m)!}}P^m_{\ell}(\cos\theta)e^{im\varphi}
$$

For ##\ell = m = 1##, we have
$$
\sqrt{\frac{(2 + 1)(0)!}{4\pi(2)!}}P^1_{1}(\cos\theta)e^{i\varphi} = \frac{1}{2}\sqrt{\frac{3}{2\pi}}e^{i\varphi}\sin \theta
$$

But Mathematica is telling me the solution is
$$
-\frac{1}{2} e^{i\varphi} \sqrt{\frac{3}{2\pi}} \sin\theta
$$

What is going wrong?
 
Physics news on Phys.org
Have you checked the definitions/conventions for the associated Legendre functions ? The definitions for Mathematica you can find on the functions.wolfram.com website. Unfortunately, it's difficult to say that special functions theory is a unitary process with unique definitions.
 
dextercioby said:
Have you checked the definitions/conventions for the associated Legendre functions ? The definitions for Mathematica you can find on the functions.wolfram.com website. Unfortunately, it's difficult to say that special functions theory is a unitary process with unique definitions.

Some are defined with a (-1)^m which is weird my professor was using that definition since we were not in class.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top