LagrangeEuler
- 711
- 22
Coherent states are eigen state of lowering operator ##a##
|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle, where ##\{|n \rangle\}## are eigenstates of energy operator. What is the case of state ##|0 \rangle##?
a|0 \rangle=0|0 \rangle=0.
So, ##|0 \rangle## is eigenstate of lowering operator. But how to get that from
|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle ?
|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle, where ##\{|n \rangle\}## are eigenstates of energy operator. What is the case of state ##|0 \rangle##?
a|0 \rangle=0|0 \rangle=0.
So, ##|0 \rangle## is eigenstate of lowering operator. But how to get that from
|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle ?