A Color of Deep Space: Distribution of Light Wavelengths

Barnak
Messages
62
Reaction score
0
I'm looking for the distribution of all wavelengths (or frequencies) of light that a stationary observer would receive at his location (at ##r = 0## and time ##t_0##), from all light sources emitting a single wavelength ##\lambda_{\text{e}}## (or angular frequency ##\omega_{\text{e}}##). The light sources are uniformly distributed in a general expanding FLRW universe, and comoving with the cosmic fluid. The spectral distribution of frequencies would tell something about the "color of deep space" (which is dark micro-waves "reddish" in our universe).

Because of the expansion of space with time, the light received by the observer will not have a single wavelength, it will have a blur instead (i.e. a dispersion). What is the distribution of wavelengths ?

More specifically, consider a universe with the following standard Robertson-Walker metric :
$$\tag{1}
ds^2 = dt^2 - a^2(t)\Big( \, \frac{1}{1 - k \, r^2} \; dr^2 + r^2 \, (d\vartheta^2 + \sin^2 {\vartheta} \; d\varphi^2) \Big),
$$
where ##k = -1, \, 0, \, 1##, and ##a(t)## is the cosmological scale factor (arbitrary function). The apparent luminosity at an observer's location, at time ##t_0##, of a punctual light source of proper absolute power ##\mathcal{P}##, located at coordinate ##r_{\text{e}}## and emitting light at time ##t_{\text{e}}##, is defined as the emitted energy per unit time per unit area (this is in Weinberg's book) :
$$\tag{2}
I = \frac{\mathcal{P} \, a^2(t_{\text{e}})}{4 \pi \, a^4(t_0) \, r^2}.
$$
The sources density (number of stars per unit volume) is
$$\tag{3}
n(t) = \frac{a^3(t_0)}{a^3(t)} \; n_0,
$$
and the volume of a spherical shell of radius ##r_{\text{e}}## is
$$\tag{4}
d\mathcal{V} = 4 \pi \, a^3(t) \frac{r_{\text{e}}^2}{\sqrt{1 - k \, r_{\text{e}}^2}} \; dr_{\text{e}}.
$$
Thus, the total luminosity at the observer's location at time ##t_0##, of all the sources is the following (using metric (1) to change the variable of integration. We assume that ##\mathcal{P}## and ##n_0## are constants) :
$$\tag{5}
\mathcal{I}(t_0) = \int_{\mathcal{V}} I \, n \; d\mathcal{V} = \mathcal{P} \, n_0 \int_{t_{\text{min}}}^{t_0} \frac{a(t_{\text{e}})}{a(t_0)} \; dt_{\text{e}}.
$$
Usually ##t_{\text{min}} = 0## (Big Bang) or ##t_{\text{min}} = -\, \infty## in some universe models.

Now, the light's wavelength is a fixed constant at emission time : ##\lambda_{\text{e}}## (at time ##t_{\text{e}}##), and stretches to ##\lambda## at time ##t_0## during propagation to the observer :
$$\tag{6}
\frac{\lambda}{\lambda_{\text{e}}} = \frac{a(t_0)}{a(t_{\text{e}})}.
$$
The differential of this equation is
$$\tag{8}
d\lambda = -\: \frac{a(t_0)}{a(t_{\text{e}})} \; H(t_{\text{e}}) \, \lambda_{\text{e}} \; dt_{\text{e}} = -\; \lambda \, H(t_{\text{e}}) \, dt_{\text{e}}.
$$
Substituting this into (5) above gives (changing to angular frequencies) :
$$\tag{9}
\mathcal{I}(t_0) = \mathcal{P} \, n_0 \int \frac{\lambda_{\text{e}}}{H(t_{\text{e}}) \, \lambda^2} \; d\lambda \quad \Rightarrow \quad \frac{\mathcal{P} \, n_0}{\omega_{\text{e}}} \int_0^{\omega_{\text{e}}} \frac{1}{H(t_{\text{e}})} \; d\omega.
$$
Now, ##H(t_{\text{e}}) \equiv \frac{\dot{a}}{a}## should be expressed as a function of ##\lambda## or the angular frequency ##\omega \equiv 2 \pi / \lambda##. This way, we can get the spectral distribution ##f(\omega)## of light, which is now "blurred" by the expansion of space.

This is interesting since for a deSitter space, we have a constant expansion rate ; ##H = \textit{cste}## (when the scale factor is ##a(t) \propto e^{t \,/\, \ell_{\Lambda}}##), so the frequencies received by the observer are all uniformly distributed on the intervall ##0 \le \omega \le \omega_{\text{e}}##.

For a dust universe ; ##a(t) \propto t^{2/3}##, we get a frequency distribution ##f(\omega) \, d\omega \propto \omega^{3/2} \, d\omega##.

The problem is that I never saw this analysis anywhere, in any book of General Relativity. Someone has references for this ?

Any idea would be greatly appreciated !
 
Last edited:
Physics news on Phys.org
Barnak said:
Why the LaTeX codes aren't showing properly inside text lines, while it's working for larger equations ? What is the environment for LaTeX code here ?? For a Physics forum, this is really weird !
Use double #'s for inline code, just as you use double $'s for the rest.
 
So, no comments on this fascinating subject ?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top