Combinatorial Problem: Analyzing Training Selection for 9 Analysts

  • Thread starter Thread starter HF08
  • Start date Start date
AI Thread Summary
The discussion centers on a combinatorial problem involving the selection of 9 analysts for varying training durations of 2, 3, and 5 weeks. The original scenario involves choosing groups without replacement, while the new scenario introduces permutations with repetitions, akin to drawing balls from a vase with replacement. The poster seeks to understand the probability of being selected for specific training durations and the odds of not being chosen at all. They express difficulty in grasping the concepts of combinatorics and permutations and request resources for further learning. The conversation highlights the complexities of calculating probabilities in combinatorial scenarios.
HF08
Messages
39
Reaction score
0
Hi,

I was reading a models book and read about a study where 9 analysts were chosen at random. Out of this group, 3 were selected for 2 week training, 3 were selected for 3 week training, and 3 were selected for 5 week training. Now I believe this models course had the idea that the first group woud be 9 choose 3. The second, 6 choose 3, and the last one 3 choose 3. I decided to ask myself a question.

This was a linear regression model type problem, but I couldn't help wondering how it would stink if you had to train for 2, 3, and 5 weeks. That is, a total of 10 weeks. So, I am going to ask the following:

Assume you could end up training for 2, 3, and 5 weeks. What is the chance you would be unlucky that they would make you study for 2 weeks, 3 weeks, and 5 weeks? What is the probability that you would be chosen for no weeks given this scenario? Also, what is a way I could say, you were chosen to train for 2 and 5 weeks, but not 3 weeks?

Thanks,
HF08
 
Physics news on Phys.org
So the original problem is about combinatorics without repetitions, while the new one is a combination of no repetitions, and permutation with repetitions. It's like drawing balls from a vase: in the original problem, each successive draw is taken from the remaining balls; in your new problem, you put each ball back in the vase before picking the new one (which introduces a chance of picking the same ball again).

It's basically like three separate draws without repetition (apply the combinatorics of the original question) for each training course (2, 3 and 5 weeks).
 
CompuChip said:
So the original problem is about combinatorics without repetitions, while the new one is a combination of no repetitions, and permutation with repetitions. It's like drawing balls from a vase: in the original problem, each successive draw is taken from the remaining balls; in your new problem, you put each ball back in the vase before picking the new one (which introduces a chance of picking the same ball again).

It's basically like three separate draws without repetition (apply the combinatorics of the original question) for each training course (2, 3 and 5 weeks).


Let's work on the 2 weeks without replacement. There are C(9,3) ways to take out 3 people from a group of 9. This is where I get stuck. How can I calculate the odds of an individual being picked as 1 of 3 for the 2nd week?

I have difficulty with understanding combinatorics/permutations. So your help my own question as well as resources to read would be appreciated.

Thanks,
HF08
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Replies
15
Views
4K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
33
Views
2K
Replies
25
Views
3K
Replies
15
Views
3K
Back
Top