Compactness in Topology and in Logic

  • Thread starter Thread starter Bacle
  • Start date Start date
  • Tags Tags
    Logic Topology
Bacle
Messages
656
Reaction score
1
Hi, All:

I am trying to understand better the similarity between the compactness theorem

in logic--every first-order sentence is satisfiable (has a model) iff every finite subset

of sentences is satisfiable, and the property of compactness : a topological space X is

said to be compact iff (def.) every cover C of X by open sets has a finite subcover, i.e.,

a subcollection C' of the cover C that also covers X , i.e., the union of the elements of

the cover contains X. But, by De Morgan, compactness is equivalent to the finite

intersection property, i.e., every finite subcollection (of the elements of a cover) has a

non-empty intersection (the subcollections will be sentences, and the intersection

has to see with the finite subcollection having a model ).

Anyway, so the topological space we consider is that of the infinite product

of {0,1} (discrete topology ) -- 0 and 1 will be the values we will be giving to the free

variables in a sentence--with the product indexed by I:=[0,1] in the Reals. We then

get the Cantor Space . Then any

string of 0's , 1's is a valuation, is a clopen subset of the Cantor Space. By compactness,

of the Cantor space (and some hand-waving) we get satisfiability.

I think this is "spiritually correct", but I think there are some gaps. Any Ideas?



.
 
Physics news on Phys.org
Well, the only gap is that you appear to be talking about propositional logic, not first-order logic. The completeness therem for classical first-order logic is more complicated to prove.

For propositional logic, to each set of sentences, assign the set of valuations which make all of the sentences true. Then the finite intersection property of the (Cantor) space of valuations is simply another way of stating the compactness of the logic.
 
Thanks, Preno; can you think of an argument along these lines to prove compactness
in FOL? I know (please critique/suggest) that in FOL, a valuation making all sentences true (if this is possible; I guess if the sentences are not contradictory) is a model/interpretation for the collection of sentences, and not just an assignment in a truth table. So, given a collection of sentences, we need to "interpret" the bound sentences by using Tarski's definition of truth . Any comments?
 
Never mind, Preno, I saw an argument that has to see with Stone's theorem on representability of Boolean algebras. I will read it and post it here soon.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top