Up until now, you've been asking about the one-way propagation of light but now you're introducing an outside observer without making it clear where in relation to the emitter and the target he is located so it's not possible to provide you with a simple answer. Why don't you stick with the one-way propagation issues until they make perfect sense to you?
For purposes of understanding the one-way propagation of light, you can consider it to be exactly like your analogy with the propagation of sound in air. So let's work out some examples. In these examples, you and I will be the targets listening for the sounds from three horns, each with a different pitch so we can distinguish them.
First, let's take a situation where you are stationary with respect to the air and I am going to be moving but I will explain how later. The first horn is stationary. The second one is moving toward you and the last one is moving away from you but they are all far away from you and in line with each other and with you. It just so happens that all three horns arrive at the same location at the same time and they each emit their respective sounds. Isn't it obvious that all three sounds will travel together through the air and arrive at you simultaneously? Now suppose we repeat the experiment but this time, I'm traveling toward you from farther away than the horns and I happen to arrive at your location at just the moment that you hear the three horns. Isn't it obvious that I also will hear all three horns at the same time too? And if I were approaching you from a position closer to the horns than you are but arrived at your location at the moment you heard the horns then I would hear all three horns at the same time as you did too?
OK, got all that? Good.
Now let's repeat the whole thing but this time the wind is blowing in the direction from the horns toward you. Will that change the order in which the sounds of the horns reach either you or me? No, they will still all arrive simultaneously both for you and me, won't they? Same thing if the wind is blowing in the opposite direction or any other direction. It also won't matter how fast the wind is blowing, will it?
Now, instead of having the wind blow in different ways, let's just have you, me and the horns all moving with respect to each other, thus creating our own wind. This, again, won't make any difference, it terms of the simultaneity of the arrival of the sounds of the horns, will it? (I'm assuming that we don't go so fast as to break the sound barrier.)
This is exactly like our situation with light. When two or more light sources traveling with respect to each other emit flashes of light when they are co-located, those flashes propagate through space together and arrive simultaneously at co-located targets, no matter how the sources or targets are moving.
Please note that we are not comparing the time it takes for the sound to travel from the horns to you and me under different conditions of the wind because that will definitely affect the propagation time and we're not measuring the propagation time. We're only demonstrating that it isn't affected by motions of the emitters or targets. In the case of sound in air, we can know the actual propagation time for the sounds from the emitters to the targets because we can use light to let us know when the horns were tooted. But we can't do that with light for the same reason we couldn't use the sound waves all by themselves to measure the propagation of other sound waves.