Comparison of attraction/repulsion measures

  • Thread starter Thread starter fer2000
  • Start date Start date
  • Tags Tags
    Comparison
AI Thread Summary
To analyze the attraction/repulsion data across multiple matrices, a paired-comparison t-test or ANOVA is suggested, depending on the specifics of the data. The matrices are symmetrical, and the goal is to determine how closely the first matrix resembles the second compared to the third. The analysis must account for the size of the matrices, which are approximately 300 x 300. The time lapse between situations is not a concern, but consistency in external conditions is necessary for valid comparisons. Understanding the connection to quantum physics remains an open question in the discussion.
fer2000
Messages
7
Reaction score
0
Hello everybody!

I have a large set of items and, two-by-two, there exists some kind of attraction/repulsion that I have measured.
Under different circumstances this attraction/repulsion changes.
So, what kind of statistical/mathematical procedure can I use to measure whether the changes (for the whole set) are “large/small”, as well as if a subset of them (lets say the first ten items) the attraction is larger than in another subset (lets say the last ten items)?.

Thanks in advance
 
Physics news on Phys.org
First, you should provide a much more detailed description of your experiment. My initial thought would be a paired-comparison t-test; possibly an ANOVA approach. Much depends on what you do -- if time is involved, then the analysis can be tricky because of possible autocorrelations. Details, details, details.
Regards,
Reilly Atkinson
 
Hello, first of all, thanks for your answer.
The situation is as follows,

My data are comprised in different matrices (each of the situations provide that information).
First one
x 1.3 -1.5 . . . . . .
1.3 x 1.2 . . . . . .
-1.5 1.2 x . . . . . .
. . . . . . . . . . . . . .

Second one
x 1.1 1.3 . . . . . .
1.1 x -0.2 . . . . . .
1.3 -0.2 x . . . . . .
. . . . . . . . . . . . . . .


Third one
x -0.1 0.3 . . . . . .
-0.1 x 0.4 . . . . . .
0.3 0.4 x . . . . . .
. . . . . . . . . . . . . . .


All of them are symmetrical and the diagonal does not make sense (I could write any number). Note that the dimension will be around 300 x 300 for each matrix.

How can I say if first one is closer (and how closer is) to second one than to third one (as well as any other combination)?
I do not mind the lapse of time between each of the situations (that provide each of the matrices), but an external condition that is the same for all the pairs that generate the matrix.


Thanks again.
 
Just out of curiosity, what is the connection of this with quantum physics?
 
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top