- #1

- 4

- 0

So say there is a finite number of singularities of f, so they're all in a circle of some radius R. It seems to me you could select any point p in the complex plane, and then make an annulus around that point such that its inner perimeter encloses the singularities. The theorem seems to say that 2pi i *Res(f,p) is equal to the integral of a closed contour around the singularities. I know this is wrong b/c it doesn't agree with what I've seen with the Cauchy Residue Thm, where I calculated that integral by summing residues at singularities. Where is the disconnect?