Complex Integration Along Given Path

Click For Summary

Homework Help Overview

The discussion revolves around a complex integration problem along a specified path in the complex plane, specifically from z = 1 to z = 5. Participants are exploring the implications of using Cauchy's Integral Formula and the Residue Theorem in their calculations.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss parametrizing the path and the implications of creating a closed contour that encloses z=0. There are questions about the evaluation of integrals on the additional path segment and the relationship between the closed contour integral and the desired integral.

Discussion Status

The discussion is ongoing, with participants questioning the validity of the original poster's approach and the assumptions made regarding the integral's evaluation. Some guidance has been offered regarding the relationship between the closed contour integral and the desired integral, but no consensus has been reached.

Contextual Notes

There is uncertainty regarding the bounds of the parametrization and the interpretation of the integral's value, as well as the expected outcome of the integration process.

usersusername1
Messages
2
Reaction score
0
Homework Statement
I am asked to find the value of the integral I = dz / (z * (z + 4)) along the contour z = 4 * t * exp(-t * 2* pi * i) + 1, where the bounds of t are [0,1].
Relevant Equations
Cauchy's Integral Formula, Residue Theorem
From plotting the given path I know that the path is a curve that extends from z = 1 to z=5 on the complex plane. My plan was to parametrize the distance from z = 1 to 5 as z = x, and create a closed contour that encloses z=0, where I could use Cauchy's Integral Formula, with f(z) being 1 / (z + 4). This gives me an answer of I = 2 * pi * i, but I know the answer is supposed to be 0.255 (from evaluating the integral directly between z=1 and z=5. Using the Residue Theorem gives me the same answer, so I am unsure of how to proceed,
 
Physics news on Phys.org
I don't understand your plan. You can evaluate the integral on the closed contour, but so what? You have no idea what the integral is on the extra piece you added to the path.
 
  • Like
Likes   Reactions: topsquark
Office_Shredder said:
I don't understand your plan. You can evaluate the integral on the closed contour, but so what? You have no idea what the integral is on the extra piece you added to the path.
I was parametrizing that piece as z = x & dz=dx and evaluating the integral between 1 and 5. I guess I am stuck on how to actually incorporate the given path into an integral.
 
usersusername1 said:
From plotting the given path I know that the path is a curve that extends from z = 1 to z=5 on the complex plane. My plan was to parametrize the distance from z = 1 to 5 as z = x, and create a closed contour that encloses z=0, where I could use Cauchy's Integral Formula, with f(z) being 1 / (z + 4).
What happened to the ##1/z## factor? What is the residue of ##1/(z(z+4))## at ##z=0##?
usersusername1 said:
This gives me an answer of I = 2 * pi * i,
That is for the entire closed curve, right?
usersusername1 said:
but I know the answer is supposed to be 0.255 (from evaluating the integral directly between z=1 and z=5.
Is 0.255 for the part of the closed path that you added, or is it a book answer for the original partial path? I would be surprised if the final answer was not complex.
usersusername1 said:
Using the Residue Theorem gives me the same answer, so I am unsure of how to proceed,
I have not tried to follow the details, but I think that you now have ##2 \pi i = -DesiredIntegral + 0.255##. So now you can easily find the value of ##DesiredIntegral##. (I put the minus sign in because it looks like the original path is clockwise. "the bounds of t are [0,1]" is not clear. Is it from 0 to 1 or is it from 1 to 0?)
 
Last edited:
  • Like
Likes   Reactions: usersusername1 and topsquark

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
32
Views
3K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K