Complex semidefinite programming

AI Thread Summary
In complex semidefinite programming (SDP), the primal and dual formulations can be adapted from real SDP by substituting real symmetric matrices with Hermitian matrices. The core question revolves around whether the results and methods applicable to real SDP, such as interior-point methods, also hold for complex SDP. It is suggested that algorithms designed for Hermitian matrices can often be reformulated using double-sized real matrices. Testing these algorithms on verifiable problems is recommended to confirm their validity. Overall, the principles of numerical analysis indicate that techniques for real symmetric matrices should extend to complex Hermitian matrices.
peterlam
Messages
16
Reaction score
0
For semidefinite programming (SDP), we have the primal and dual forms as:

primal

min <C,X>
s.t. <A_i,X> = b_i, i=1,...,m
X>=0

dual

max <b,y>
s.t. y_1*A_1 + ... + y_m*A_m <=C

where the data A_i and C are assumed to be real symmetric matrices in many textbooks and online materials.

If we consider complex SDP where A_i and C are Hermitian, will all the results about real SDP be correct by replacing the real matrices to Hermitian matrices? To be precious, will the primal and dual forms be still the same? Do the interior-point methods for real SDP work for complex SDP?
 
Mathematics news on Phys.org
You have slightly lost me in a forest of unfamiliar notation and jargon, but mostly in numerical analysis anything that works for real symmetric matrices will also work for complex Hermitian matrices.

You can often rewrite algorithms that use Hermitian matrices using double-sized real matrices, replacing every matrix z = x + iy with

\bmatrix{x &amp; y \cr -y &amp; x}

and the obvious corresponding thing for vectors.

So my advce would be just try it on a problem where you can verify the answer some other way, and I would be happy to bet a few dollars it will work fine.

(BTW I can't figure out why my matrix doesn't have a closing bracket!)
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top