Complex variables conformal mapping trig identity

EnginerdRuns
Messages
2
Reaction score
0

Homework Statement


map the function \begin{equation}w = \Big(\frac{z-1}{z+1}\Big)^{2} \end{equation}
on some domain which contains z=e^{i\theta}. \theta between 0 and \pi
Hint: Map the semicircular arc bounding the top of the disc by putting $z=e^{i\theta}$ in the above formula. The resulting expression reduces to a simple trig function.

Homework Equations


I can get the map if I can figure out what function they're going for, but I have no idea what function this is.


The Attempt at a Solution


$$w = \Big(\frac{e^{i\theta}-1}{e^{i\theta}+1}\Big)^{2}$$
Where the heck do I go from here?
 
Physics news on Phys.org
Welcome to PF!

Hi EnginerdRuns! Welcome to PF! :smile:

Multiply top and bottom of the fraction by e-iθ/2 :wink:
 
Thanks bro. I'm running off of way too little sleep at this point.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top