Components and basis transform differently

Ratzinger
Messages
291
Reaction score
0
Why do components and basis vectors transform under Lorentz transformation differently (inverse Lorentz for basis), whereas for orthogonal transformation components and basis are transformed by same matrix?

Thank you
 
Physics news on Phys.org
Are u talking about the group theoretical approach to relativity,or differential geometry ?I think you're mixing them.Components & basis vectors would imply geometry,while Lorentz transformation & orthogonal transformation would imply \mbox{O(3)/SO(3)} or SO(3,1)...?

So which one would u prefer?

Daniel.
 
Ratzinger said:
Why do components and basis vectors transform under Lorentz transformation differently (inverse Lorentz for basis), whereas for orthogonal transformation components and basis are transformed by same matrix?

Thank you
I´m quite surprised that you want follow the dictatorship of relativism by tranforming even the basis. I expected you to rather conserve absolute values.
o:)
 
Well,that's the correct way to do it.Mathematcally.Physicists are rather sloppy,here,i must say,because are usually interested in how the commponents of (pseudo)tensors behave when a change of noninertial reference frames is done...They have no use for the transformation laws of the basis (co)vectors.

Daniel.
 
Ratzinger said:
Why do components and basis vectors transform under Lorentz transformation differently (inverse Lorentz for basis), whereas for orthogonal transformation components and basis are transformed by same matrix?

Thank you

The basis and the components ony transform in the same manner for a very special set of coordinates - orthonormal coordinates to be precise.

Probably the very simplest way to see why coordinates and vectors transform differently is to look at what happens when you double the length of the basis vector. It should be easy to see that if you double the basis vector, you halve the coordinate value, and vica-versa. That is why coordinates and basis vectors transform differently (oppositely).

Note that when you double one of the basis vectors, you are no longer in an orthonormal basis (you are orthogonal, but not normal).

So there is nothing special about the Lorentz transform - in general ALL coordinates transform differently than basis vectors. (Orthonormal coordinate systems are the exception - of course, they are a very common and important exception).
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...

Similar threads

Back
Top