I Compute Gradient in GR: Step-by-Step Guide

  • I
  • Thread starter Thread starter John Greger
  • Start date Start date
  • Tags Tags
    Gr Gradient
John Greger
Messages
34
Reaction score
1
TL;DR Summary
I'm trying to compute the extrinsic curvature. I have the formula and everything I need to plug into the formula. But I get confused when executing this calculation..
I'm trying to compute the extrinsic curvature. I have the formula and everything I need to plug into the formula. But I get confused when executing this calculation..

I have that ##ds^2_{interior} = -u(r)dt^2 + (u(r))^{-1} dr^2 + r^2 d\Omega_3^2##. This is a metric describing the interior and exterior of a bubble. The extrinsic curvacture is given by
\begin{equation}
K_{ab} = N_{\mu; \nu} (\frac{\partial x^\mu}{\partial y^a})(\frac{\partial x^\nu}{\partial y^b}) = ( \frac{\partial N_\mu}{\partial x^\nu } - \Gamma^{k}_{\mu \nu} N_{k}) )(\frac{\partial x^\mu}{\partial y^a})(\frac{\partial x^\nu}{\partial y^b}).
\end{equation}

##N_{\mu; \nu}## is the norm of the bubble which is given by ##N_a = (-\dot{R}, \dot{T},0,0,0)##. Since we are looking for dyamical on the brane, we don't care about the angular part of the metric: ##(t,r, \Omega) \rightarrow (T(\tau), R(\tau), \Omega)##.

##x^\mu## labels bulk metric (I think##(\tau, r, \Omega)##) and ##y^a## labels coordinate on the brane (I think ## (T(\tau), R(\tau), \Omega)##.

The nonzero christoffel sumbols of the Metric are ##\Gamma^r_{rr} = \frac{\partial u / \partial r}{u(r)} = \Gamma^t_{rt}##.

I don't know howto substitute all of this into (1). Should I sum all possible combinations of indices or should I sum the following two combinations ##(\mu, \nu) = (\tau, r) ; (a,b)= (T(\tau), R(\tau))## and ##(\mu, \nu) = (r, \tau) ; (a,b)= (R(\tau), T(\tau))##?

If I get some initial help here it will be straight forward to take it from there I think.

P.S the answer should be $$K_{a,b} = -\frac{1}{u \dot{T}}[\ddot{R} + (1/2) \frac{\partial u}{\partial R}] + u(R) \dot{T} R$$ but I cannot really arrive at this. Any help to get this expression is much apprichiated.
 
Physics news on Phys.org
##N_{\mu;\nu}## is the covariant derivative of ##N_\mu##.
 
martinbn said:
##N_{\mu;\nu}## is the covariant derivative of ##N_\mu##.
Hi! Many thanks for your answer. Yes indeed, might have abused language. I believe I expanded it in equation 1 the right way. But I feel that I am confused about how to sum the indices accordingly..
 
You sum the indices with the Einstein summation convention, which basically says you sum over all possible values of repeated indices.

a and b appear on the left hand side, so you are computing 16 quantities, as a and b both vary from 0 to 3 (or possibly 1 to 4, depending on your notation).

For each specific value of a and b, you have one component of ##K_{ab}##. To get the value of that component, you sum over all values of k, ##\mu##, and ##\nu##. Thus if you wrote it out longhand, in general each of the 16 components of ##K_{ab}## would be the sum of 64 terms. Hopefully, though, your metric is simple enough that many of the terms are zero.
 
  • Like
Likes John Greger and vanhees71
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top