quasar_4
- 273
- 0
Homework Statement
Let S be the spiral surface parametrized by {(x,y,z) | x=ucosv, y=usinv, z=v} where 0<u<1 and 0<v<Pi/2. Let F(x,y,z) = (z,x,y) and compute \oint F \cdot t dS.
Homework Equations
The Attempt at a Solution
Let me explain where I'm not certain. I can compute the tangent vector t quite easily given the parametrization of S (using the chain rule) and parametrize F with x=ucosv, y=usinv, and z=v. Then I can put it all into the dot product, get a nice scalar equation, and do a surface integral over u and v - not bad. But is that the best way to approach it? Here's what I'm wondering: if I look at the spiral surface, it's not simply connected (right?) so I can't use Stoke's theorem. At least, that's what I think - but I seem to be having a hard time getting the simply connected concept into my head. Am I right (that the region isn't simply connected)? If I drew a curve around the spiral and tried to shrink it down, I'd have trouble when I got to the center of the spiral - so I think it's not simply connected...
Basically, I'm looking for the most efficient way of solving the problem. But I'm not sure if that's my approach or not. Any comments?